Diagnosing Performance Differences in Model
Checkers via Runtime-Guided Problem Generation

Yibo Dong*!, Yicong Xuf, Wenjing Deng, Yu Chen?, Xiaoyu Zhang', Jianwen Lif,
Chengyu Zhang®, Geguang Puf
*National University of Singapore, Singapore
TEast China Normal University, China
fChuzhou University, China
SLoughborough University, United Kingdom

Abstract—Model checking has achieved remarkable success in
the hardware domain, largely due to the accumulation of intricate
optimizations and finely tuned implementation details. As tools
evolve, diagnosing performance differences to better understand
the interplay of these factors has become increasingly important.
Yet existing problems that reveal such differences are often too
large for meaningful inspection, limiting their diagnostic value.

To address the problem, this paper proposes AIGROW, a frame-
work for generating hardware model checking problems, and
introduces our experience on diagnosing performance differences
in model checkers with the generated problems. AIGROW uses a
feedback-guided process that evolves problems based on runtime
information, selectively retaining those that become more difficult
for a target checker. Performance differences are then revealed
by evaluating these problems across hardware model checkers
that have similar algorithms.

Our evaluation demonstrates that ALIGROW generates problems
that are more than 100 times smaller than those produced by
existing generators, while still revealing substantial performance
differences. Diagnosing the performance differences has led to
concrete improvements in CAR-based checkers: (1) uncovering
structural inefficiencies in their exploration strategies, (2) solving
18 previously unsolvable HWMCC’24 problems, and (3) reducing
runtime from hours to minutes in several cases.

I. INTRODUCTION

Formal verification has been an essential approach in ensur-
ing the correctness of complex systems. Compared to testing,
which can only detect the presence of bugs, formal methods
aim to prove their absence by exhaustively analyzing all possi-
ble behaviors of a system under a formal model. Among these
techniques, model checking [12] has emerged as a particularly
successful approach in the hardware domain. Unlike software
systems which require generalization and refinement, hardware
designs are naturally described as finite-state transition sys-
tems with well-defined states and transitions, making them
highly amenable to exhaustive formal analysis [|11].

In hardware model checking (HWMC), the task is to
automatically verify whether a hardware design M satisfies
a given specification P [2], [L1]. If the model checker finds
that M £ P, it returns a counterexample; otherwise, it may
produce an inductive invariant as a proof of correctness [41]].
Despite the problem being PSPACE-complete in general [36],

T Geguang Pu is the corresponding author.

model checkers have achieved remarkable practical success in
verifying real designs [16], [18], [20].

This practical success is driven largely by a rich combina-
tion of heuristics, algorithmic optimizations, and low-level im-
plementation decisions. Modern checkers apply sophisticated
optimizations [8]], [9] in areas such as clause learning, lemma
generalization, and SAT encoding, where even small variations
can lead to significant differences in performance [22f]. Under-
standing and diagnosing these differences is crucial for both
optimization and development.

To support such diagnosis, we argue that the field needs a
new class of benchmarks: ones that are challenging enough
to expose performance gaps, yet compact enough to enable
precise, fine-grained analysis. Existing large-scale industrial
benchmarks, such as those from HWMCC [23]], [24]], are es-
sential for overall evaluation, but their complexity often masks
the internal behavior of model checkers. Their sheer size
makes it nearly impossible to trace procedural behaviors in de-
tail. This is especially important for recent advances in model
checking, e.g., those related to lemma predication [37]], [39],
clause management [[14]], and SAT query design [[13[], [38],
which are closely related to the detailed procedural behavior
of model checkers. For such developments, transparency and
traceability are essential. Additionally, the total number of
such benchmarks is limited (only about a thousand) making
them insufficient for evaluating incremental improvements.

Existing tools such as AIGFUZZ [1]] and AIGEN [26]] make
initial progress toward automated benchmark generation, but
they exhibit significant limitations in generating useful bench-
marks for identifying potential optimization opportunities in
hardware model checkers. AIGFUZZ employs purely random
generation techniques to rapidly produce AIGER problems.
However, despite its efficiency, it rarely generates challeng-
ing problems. AIGEN, in contrast, aims to generate more
complex and varied logic structures by uniformly sampling
Boolean functions over a fixed number of inputs. While
this approach can lead to structurally complex problems, the
resulting benchmarks are often not especially challenging
and the exhaustive nature of its generation process severely
limits scalability. Moreover, both tools produce circuits with
over 15,000 components, making them unsuitable for manual
inspection or detailed procedural analysis.

In this work, we propose a novel and efficient approach for
generating compact yet challenging hardware model check-
ing problems, implemented as a tool called ATGROW. Here,
“efficient” refers to the ability to rapidly generate meaningful
problems; “compact” refers to small circuit size; and “chal-
lenging” to problems that cannot be solved within the typical
one-hour time limit used in competitions. Unlike prior tools,
AIGROW is purpose-driven: its aim is not random diversity
or structural complexity, but to reveal performance differences
for identifying potential optimization opportunities.

Our approach is inspired by feedback-guided input gener-
ation techniques widely adopted in the software testing com-
munity, such as AFL [[17] and Randoop [33|]. These systems
use runtime feedback — such as code coverage or execution
time — to guide the search for inputs that exercise diverse
or difficult behaviors. We adopt a similar strategy: AIGROW
evolves hardware circuits by querying a model checker and
using its solving time and result status as feedback. This
feedback loop is crucial in the hardware domain, because
unlike software where adding loops or constraints often corre-
lates with increased difficulty, hardware verification lacks such
strict monotonicity. A small structural change, like inserting a
latch, can unexpectedly simplify or complicate the verification
task. Starting from basic circuits, ATGROW applies small-step
structural extensions — such as inserting gates, inverters, or
latches — and consults the model checker after each step.
If the new instance proves more difficult, it is retained and
further evolved. This incremental strategy ensures that the
circuit remains small while steadily increasing in difficulty.

Our evaluation demonstrates that ATGROW produces chal-
lenging hardware model checking problems significantly more
efficiently than current tools. The resulting circuits typically
contain fewer than 250 components, orders of magnitude
smaller than those circuits that have over 15,000 components
produced by AIGEN or AIGFUZZ; yet remain diverse and
challenging. These problems effectively reveal performance
differences among different model checkers, providing a valu-
able asset for tool developers and the wider hardware model
checking community. Moreover, the problems generated by
ATIGROW has already led to targeted optimizations in the state-
of-the-art CAR checkers, helping identify and fix performance
bottlenecks. This underscores ATGROW ’s practical utility not
only as a benchmark generator, but also as a tool for advancing
model checking itself.

II. PRELIMINARY

And-Inverter Graph: An And-Inverter Graph (AIG) is a
directed acyclic graph used to represent gate-level hardware
circuits in a compact form [5S[]. It serves as a simplified se-
quential hardware model tailored for hardware model checking
competitions, consisting of only three fundamental compo-
nents: AND gates, inverters, and latches.

Beyond hardware circuits, AIGs are also commonly used
to encode SAT and model-checking problems. Most modern
model checkers accept AIG as an input format, and other

representations (such as SMV [10]) can be easily converted
into AIG using tools provided in the AIGER release.
Hardware model checking: Hardware model checking
(HWMC) focuses on verifying whether a finite-state repre-
sentation of a hardware design satisfies a given temporal
property. Unlike software verification, which often involves
abstraction to handle infinite or complex control structures,
hardware designs are naturally finite-state and structurally
regular [11]. This makes HWMC particularly amenable to
symbolic techniques such as SAT solving. Over the past few
decades, HWMC has become widely adopted in industry,
enabling the verification of deep bugs and ensuring correctness
in processor pipelines, memory systems, and control logic.

State-of-the-art HWMC techniques are SAT-based and fall
into several families, each with different trade-offs in proof
power and efficiency. BMC [3] reduces the search for coun-
terexamples to a sequence of SAT problems with increasing
bounds. While effective at bug finding, it is incomplete unless
a completeness threshold is set. Techniques like IC3/PDR [6]]
and CAR [31] avoid full unrolling and instead construct or
refine inductive approximations of reachable states. Forward
and backward variants of CAR further explore different direc-
tionality in proof and counterexample search.

Complementary Reachability Analysis (CAR) For com-
pleteness, we briefly summarize the key idea of CAR. It
maintains two evolving sequences: a U-sequence, representing
an under-approximation of the reachable states, and an O-
sequence, representing an over-approximation. The procedure
iteratively explores states in the U-sequence and checks, via
SAT queries, whether they can reach any frame in the O-
sequence. If the query is satisfiable, a new reachable state
is discovered and added to the U-sequence. If the query is
unsatisfiable, the unsat core is used to refine the O-sequence,
eliminating unreachable states.

III. THE ATGROW FRAMEWORK

This section presents the AIGROW framework, which is
designed to generate compact and challenging hardware model
checking benchmarks that expose performance differences
between model checking tools, algorithms, or optimizations.
Unlike prior work that focuses purely on generating problems,
our framework is explicitly on diagnosing model checkers: it
aims to create instances that reveal performance divergences
in checker behavior and support detailed analysis.

A. Motivation and Framework Design

Performance differences between model checkers often
manifest when one tool successfully solves a benchmark while
another fails within the time limit. Such divergences are
particularly valuable for diagnostic purposes. However, such
benchmarks are often large and structurally complex, which
makes them difficult to analyze and understand.

ATIGROW addresses this by simplifying the overall objective
into two sequential tasks: (1) generate compact yet challenging
problems for one target checker, and (2) filter out instances

,,,,,,,,,,,,,,,,,,,,,,,,,,,, N
V1o jyes (T J
Unsafe? ﬁ—O—I t;>t;? _ ‘—{é}
> '"ﬁ};""""""” Model
Checker
a

| no {
ha—

T
no yes

(b) Assessment

&

Fig. 1: Overview of AIGROW. T; represents the candidate ¢ to
extend, whose solving time is ¢;. At last, those candidates whose
solving time exceeds the target limit will be returned together.

Dropped (c) Retaining

(a) out (b) (d)

Fig. 2: AIGs and the corresponding tree structures.

that are also difficult for the comparison checker. This work-
flow enables the isolation of cases that are selectively difficult,
thereby providing clearer diagnostic value. An overview of this
process is illustrated in Fig. [T}

To generate compact yet challenging instances, AIGROW
employs a feedback-guided generation framework inspired
by techniques in software fuzzing. The core idea is to use
runtime feedback from the target checker to steer structural
evolution. Specifically, solving time serves as a proxy for
problem difficulty, while the safety status (i.e., safe or unsafe)
determines the direction of evolution. Only unsafe instances
are expanded, based on the formal guarantee that safe instances
remain safe under our expansion rules (which will be proved
later). This ensures that the instances in the evolution retain
the potential to become increasingly difficult.

The generation loop consists of three key stages:

« Expanding: Select a candidate problem and structurally

expand it by adding new components and connections.

o Assessing: Serialize the expanded design into AIGER

format and measure its difficulty using the target checker.

o Retaining: Keep the new instance if its solving time

surpasses a predefined solving time threshold or if it is
unsafe and more difficult than its predecessor.

While ATGROW is compatible with other formats, we imple-
ment and demonstrate it using the bit-level AIGER format [J5]],
which is widely adopted in hardware model checking. This
choice ensures consistency with standard verification work-
flows and allows seamless integration with existing tools.

B. Illlustrative Example

To illustrate the problem generation process, consider a
simple hardware model represented by an AIG, as shown in

Algorithm 1: Runtime guided problem generation

Input : Parameters p, Hardware model checker c,
Time thresh thresh
Output: Problems A
1 Procedure FeedbackExtension (p, ¢)

2 A< init ()

3 queue < init ()

4 while timeLimit not reached do

5 (a,tq) ¢ randomlyChooseFrom (queue);
6 a’' + expand(a, p);

7 (), status) < c.assess (a');

8 if t/, > ¢, then

9 if t/, > thresh then

10 L A+ Au{d}

1 if status == unsafe then

12 L queue < queue U {(d’, 1))}
13 return A;

Fig. 2[(a). This model consists of an AND gate A, with inputs
Iy and Lg, where Ly is a latch, and the output of Ag serves as
the system’s output. In our approach, the structural connections
between components are represented using a tree, as shown in
Fig. 2{b). Each node in the tree corresponds to a component
in the AIG — such as an AND gate, a latch, or an input. This
hierarchical representation enables systematic modification of
connections during the expanding process.

To expand this design, we first “loosen” the tree by dis-
connecting all the input nodes (Ip and I;), making their
parent nodes (Ag) extensible. We then randomly generate
new components and connections. For example, a new AND
gate A; might be inserted and connected to the input of A,
with the output of the existing component Ay connected to
the input of Lj. Afterwards, all the dangling positions are
connected to fresh inputs (/o and I7), as shown in Fig. @Kd).
This yields a structurally more complex AIG, illustrated in
Fig. Pfc). The new AIG is then serialized into the AIGER
format and evaluated by a hardware model checker. If the new
AIG instance is unsafe and its solving time is longer than
that of the original one, which indicates increased difficulty,
the instance is retained for further expanding. Separately,
if the solving time exceeds a predefined threshold (e.g.,
one hour) — regardless of whether the instance is safe or
unsafe — it is considered sufficiently challenging and kept
for being in the returned benchmarks. This dual retention
process allows AIGROW to both progressively generate more
challenging problems, while maintaining a manageable size,
and accumulate a diverse set of difficult benchmarks.

C. Generation Process

The algorithm of the generation process is shown in Alg.
It takes as inputs a parameter setting p and a hardware model
checker ¢, and outputs a set of challenging AIGER problems
A. The parameter setting p contains predefined probabilities,
which determine the types of new components to generate

(see Line [6). This parameter can be adjusted to control
the complexity and characteristics of the hardware design,
such as prioritizing certain components or limiting connection
patterns. Below is a detailed introduction to each process.

1) Expanding Process: The expanding process begins by
selecting a candidate from the pool and applying a loosen
operation, which disconnects all input nodes and marks the
corresponding positions as extensible, i.e., available for further
structural growth. From this loosened structure, the candidate
is expanded by repeatedly applying one of three extension
rules to replace extensible positions. Finally, any dangling
inputs to the newly generated components are connected to
fresh input nodes, completing the model and ensuring syntactic
well-formedness. The expanding rules are defined as follows:

o Rule (a) insert a new component and connect its output
to the input of an extensible node;

e Rule (b) connect the output of an existing component
to the input of an extensible node, provided that the
connection does not form a purely combinational cycle
(i.e., a cycle not passing through any latch);

o Rule (c) insert an inverter to a newly created edge.

For example, to expand Fig. [2[a) to Fig. Jfc), one needs to
apply rule (a), generate a new AND gate A; and connect it
to the left-hand side of Ag; and apply rule (b), connect the
output of Ay to the input of Lo (recall that Lg is loosened in
advance). Since no negations exist, no application of rule (c)
is required in this expansion.

Each rule plays a distinct role in enabling systematic and
expressive structure generation:

« Rule (a) expands the structure by introducing new com-
ponents, and may introduce new extensible nodes (e.g., at
the introduction of an AND gate). Without it, the structure
cannot sustain growth since no other rules can replenish
extensible nodes.

o Rule (b) connects existing logic to extensible points,
enabling the integration of previously generated logic,
such as feeding complex expressions into latches to
store their values. Without it, structural reuse would be
impossible, leading to designs that are either shallow or
overly large without increased complexity.

« Rule (c) introduces negation and is necessary to ensure
logical completeness. Without it, certain Boolean func-
tions, such as -z A x would be unrepresentable.

Together, these rules form a minimal yet complete set for

structural extension: (a) and (b) provide controlled growth and
interconnection, while (c) ensures logical expressiveness.

This design is driven by a key intuition: input nodes
represent unconstrained behavior where no logic limits their
values, allowing their outputs to vary freely. This is why
input nodes are used as the initial values, acting as a starting
point with no inherent restrictions. As inputs are progressively
replaced with components (e.g., gates, latches, inverters, and
their combinations), each replacement introduces new con-
straints that reduce the system’s freedom, gradually narrowing
the possible state space. For example, replacing an input

with an AND gate connected to both a and —a enforces
a contradiction; Similarly, replacing an input with an AND
gate that connects to any component ¢ and a latch [that
stores the negation of its previous value (—Pre(c)) prevents
the output from being ¢true in two consecutive cycles. Through
this process of replacing inputs with components and adding
constraints, our method guides the model toward greater be-
havioral restriction, leading to more complex and challenging
verification tasks.

2) Assessing Process: Once the candidate has been ex-
panded, it is serialized into an AIGER problem that can be
directly processed by hardware model checkers. The model
checker then assesses the problem’s difficulty by attempting
to solve it. We use solving time as a proxy for problem diffi-
culty, under the assumption that more complex or constrained
structures generally require more effort to verify. Our intuition
is that modern model checkers — including those based on
BMC, PDR, CAR, and interpolation — typically explore the
state space incrementally. As such, a longer solving time
generally reflects increased structural complexity or deeper
reasoning requirements.

While solving time can be influenced by solver heuristics
and implementation details, these factors remain consistent
when using the same checker, making it a stable and meaning-
ful feedback signal within our framework. Moreover, solving
time is a widely accepted metric in this domain: for example,
the par-2 score used in the HWMCC competition is based on
it, and similar conventions are followed in the SAT community.

Although richer feedback such as proof or counterexample
size might seem informative, not all model checkers are de-
signed to produce minimal or even comparable artifacts (e.g.,
CAR and PDR do not guarantee minimal counterexamples),
making such metrics unfair for evaluation. Solving time, in
contrast, provides a uniform and practical signal that aligns
with standard practice.

3) Retaining Process: After a candidate has been extended
and evaluated, the system determines whether the new instance
T’ should be retained for further expanding or discarded. This
decision hinges on its difficulty, as measured by the solving
time, and its safety status, which affects its potential for
further transformation.

We adopt the following dual retention strategy:

o If T is unsafe and its solving time is longer than that of
its predecessor 7', it is retained in the candidate queue,
because this reflects an increase in complexity, suggesting
that the new structure T poses a greater challenge to the
model checker.

« Independently, if 7" takes longer than a predefined thresh-
old (e.g., one hour) to verify — regardless of its status
— it is kept for future return. These hard instances are
considered valuable as challenging problems potentially
for showing the performance differences.

Importantly, we only update the queue with unsafe cases.
This decision is grounded in a fundamental property of our
expanding process: safe cases remain safe after expanding.
The underlying reason is that our approach replaces input

nodes with constrained sub-circuits. Since these inputs are
originally unconstrained, any replacement narrows the space of
allowable behaviors and therefore cannot introduce new unsafe
behavior. More formally,

Theorem 1 (Safety Closure under Expanding). Let T be a
sequential circuit with input variables ¥ € {0,1}" and a single
output variable o. Suppose that T' is safe, meaning that for all
input valuations T, the output evaluates to true:

vi € {0,1}", T(Z) = 1.

Then, for any extended circuit T' obtained from T by applying
any of the input-replacement rules (i.e., replacing an input
with a sub-circuit), the extended circuit T’ also satisfies for
all input valuations y:

v e (0,1}, T'(f) = 1.

Proof. Let ¥ = (x1,...,xy,) be the original inputs to T'. In the
extended circuit 7", one or more of these inputs are replaced
with computed signals g;(%;), forming a functionf : §¥ — &
that maps the new inputs ¥ € {0,1}™ to a derived vector
#e {011,

By construction, the output of 7" is:

T'(§) = T(f(7))-

Since T is safe, we have T(Z) = 1 for all ¥ € {0,1}".
Therefore, for any § € {0,1}™, the derived input f(%) €
{0,1}™ lies within the domain over which T' always outputs
1. Thus,

') =T () =1

In other words, T” restricts the input space of T to a subset
of {0,1}", and since T outputs 1 on the entire space, it must
also output 1 on any subset. Hence, T” is also safe. O

Here’s a concrete example:

Example III.1 (To extend safe cases can only yield safe cases).
Consider a simple circuit T(x1,x9) = —(x1A—x1Ax2), which
is safe since it always evaluates to 1. Indeed, the sub-formula
x1 A~y is always false, making the entire expression true
regardless of xo.

Now suppose we construct T" by replacing x1 with a sub-
circuit ¥} = y1 A y2 A Pre(ya), and xo with b, = y3 A ya.
Here, Pre(ys) denotes the value of yo in the previous cycle,
retrievable via a latch storing its value. Then:

T (y1,y2,Y3,ya) = T(y1 A y2 A Pre(ya), ys A ya).

Since T = 1, any evaluation of T'(y1, Y2, ys, ya) still yields 1.
This illustrates that restricting the input space via functional
substitution does not violate safety.

As proved, safe cases will always remain safe under our
construction rules. What’s more, the original safe core also
applies to the expanded circuit. This implies that they cannot
lead to new unsafe behaviors and therefore cannot contribute
to the synthesis of more diverse cases.

By contrast, unsafe cases retain the potential to evolve
in multiple directions: they may remain unsafe or become
safeﬂ while become more complex through further structural
changes. By focusing only updates on these unsafe cases,
ATIGROW ensures that each retained instance has the capacity
to guide the generation process toward more difficult, more
interesting, and more diverse benchmarks.

This targeted update mechanism distinguishes our approach
from purely random generation strategies, which lack direc-
tional guidance and often struggle to produce problems of
increasing difficulty. By selectively retaining only the most
informative and promising instances, ATGROW incrementally
drives the evolution of the benchmark set in a principled and
efficient way.

IV. EVALUATION

The central goal of ATGROW is to generate benchmarks that
reveal performance differences between model checkers in a
way that is both efficient and practically useful. To validate this
capability, we organize our evaluation around the following
three research questions, progressing from tool efficiency to
benchmark quality and ultimately to practical impact:

e« RQI1: Can AIGROW efficiently generate challenging
problems? We show that ATGROW can quickly produce
problems that are unsolvable within standard time limits
for various state-of-the-art model checkers, demonstrating
its effectiveness as a generator of difficult instances.

¢ RQ2: Are the generated benchmarks compact enough
for meaningful analysis? We show that the challeng-
ing benchmarks produced by AIGROW are significantly
smaller than those generated by existing tools, making
them ideal for fine-grained analysis and diagnosis.

¢ RQ3: How does retaining safe cases affect the gen-
eration of challenging verification problems? We con-
ducted an ablation study and show that unsafe cases are
the primary source of challenging benchmarks, which
empirically justifying the design choice of AIGROW to
discard safe cases.

¢« RQ4: Can the generated benchmarks help devel-
opers diagnose and improve modern checkers? We
demonstrate that ATGROW uncovers non-trivial perfor-
mance gaps, which in turn lead to actionable insights
and concrete optimizations. These improvements translate
to measurable gains across both synthetic and real-world
benchmarks.

A. Evaluation Setup

Environment Setup. We conducted the experiments in a
cluster, consisting of 240 nodes with 6720 processor cores
altogether (14 processor cores per node) and running at
2.6GHz with 96GB of RAM per node. The operating system
is RedHat 4.8.5-16 and the Python version is 3.8.10.

IThe formal proof is omitted due to space. In short, ‘Unsafe’ means there
exists a violating input valuation, which could be blocked by new constraints.

TABLE I: The number of challenging (unsolved within 1 hour)
problems generated by different tools in 24 hours. AIGROW-
random denotes AIGROW without the runtime guided strategy.

ABC-PDR IC3ref FCAR B.CAR
AIGROW 10 2 10 5
AIGFUZZ 0 1 8 12
AIGEN 0 0 0 0
AIGROW-random 0 0 0 0

Model Checker Candidates. State-of-the-art model checking
algorithms include BMC [2], IC3/PDR [7] and CAR [31].
We choose the model checkers ABC [8]], IC3ref [25] and
SimpleCAR [30]] for the evaluation of our methods. The PDR
algorithm implemented within ABC is quite efficient and
mature. IC3ref is a basic yet efficient implementation of the
IC3 algorithm. SimpleCAR is an efficient model checker that
implements the CAR algorithm, which can perform the search
in two ways, referred to as Backward CAR and Forward CAR.

B. Evaluation results

RQI: Can AIGROW efficiently generate challenging prob-
lems? We evaluate the generation efficiency of AIGROW by
comparing it with three baselines: AIGFUZZ, AIGEN, and a
variant of ATGROW without runtime guidance, referred to as
AIGROW-random. Each tool is given 24 hours on a single
thread to generate problems targeting four state-of-the-art
model checkers: ABC-PDR, IC3ref, Forward-CAR (Forward
CAR), and Backward-CAR (Backward CAR). A problem is
considered challenging if it cannot be solved by the checker
within 1 hour.

Summary of Results. As shown in Table [, AIGROW
consistently generates more challenging problems than all the
other tools across most checkers. It is the only tool capable
of producing any unsolved instances for ABC-PDR, a widely
used and highly optimized tool. Even without any domain-
specific tailoring, ATIGROW generates 10 timeouts on ABC-
PDR and 2 on IC3ref. ATGROW-random, which disables feed-
back guidance while retaining the same structural mutation
strategy, generates no challenging problems. These results
highlight the strength of runtime-guided generation in steering
the search toward problem regions that stress the checker’s
reasoning capabilities.

In contrast, ATIGEN fails to produce any challenging prob-
lems across all checkers, suggesting that its structural diversity
does not translate into hardness. AIGFUZZ performs better
on Backward CAR and Forward CAR due to its aggressive
random mutation strategy but remains ineffective on IC3ref
and ABC-PDR. This indicates that random approaches can
occasionally produce hard instances, but do so inconsistently
and inefficiently.

Generation Dynamics Over Time. Fig. provides a
temporal view of generation performance by plotting the
maximum solving time of generated instances as a function of
wall-clock time. Despite the computational overhead incurred
by runtime assessments, AIGROW is still the first tool to
produce timeout-inducing problems on both ABC-PDR and
IC3ref. This underscores the efficiency of runtime feedback:

—+— AIGROW AIGEN
AIGFUZZ —— AIGROW-nofeed
ABC-PDR IC3ref
7000 7000
—
5000 5000 L
3000 3000
1000 1000 J
0 0
0 30000 60000 90000 0 30000 60000 90000
Forward CAR Backward CAR
7000 SR 7000 ‘
5000 5000
3000 3000
1000 1000
0 ‘ 0
0 30000 60000 90000 0 30000 60000 90000

Fig. 3: Comparison of the max solving time. The x-axis denotes
the CPU time, and the y-axis indicates the max solving time of
a single case. Time limit for model checkers is set to 2 hours.

TABLE II: The parameter settings. Each row represents the
appearance probability of input, latch, and AND gate.

Input Latch AND Gate
Setting 1 15% 70% 15%
Setting 2 25% 50% 25%
Setting 3 20% 40% 40%
Setting 4 40% 40% 20%

runtime data not only filters better instances but also acceler-
ates convergence toward difficult regions of the problem space.

Robustness Across Parameters. To test the sensitivity of
AIGROW to structural parameters, we evaluate it under four
configurations that vary the probability of introducing input
nodes, latches, and AND gates (Table . The default (Setting
1) prioritizes latch-heavy designs, while the others emphasize
richer combinational logic or higher input variety.

As shown in Fig. @] AIGROW consistently generates timeout
cases on ABC-PDR and Forward CAR across all parameter
settings, typically within the first 15,000 seconds. Although the
precise timing of hard instances vary across settings, AIGROW
remains effective across the board. On IC3ref and Backward
CAR, performance differences between settings are more
pronounced, but in most scenarios, ATGROW still manages to
generate challenging benchmarks. These results demonstrate
that the runtime feedback mechanism adapts well to different
structural configurations, allowing ATGROW to maintain robust
performance under diverse generation heuristics.

We conclude that ATGROW effectively generates challeng-
ing problems for all evaluated model checkers.

RQ2: Are the generated problems compact enough for
meaningful analysis? We assess the quality of the benchmarks

TABLE III: Average solving time and average size (latches + AND gates) of the top 50 problems on each model checker.

AIGROW AIGFUZZ AIGEN
avg. time (s) avg. size avg. time (s) avg. size avg. time (s) avg. size
PDR 1532.59 219 11.96 22,790 0.79 180,120
IC3ref 371.37 224 562.75 29,036 1.81 180,186
B. CAR 775.94 51 1694.85 20,815 2.07 180,204
F. CAR 1599.03 159 1389.48 24,570 133.34 180,214
—— settingl setting3
setting2 ~ —— setting4 “ i) H . 50 } |
PDR IC3ref » § » ! * - 2 !
7000 7000 1 15 25 i X | =
o o B e w12 [, e= SIS E
S ¢ &S s ¢ & & s § & & ©
5000 5000 e G © & E Ay
(d) Backward
3000 3000 (a) PDR (b) IC3ref (c) Forward CAR CAR
Fig. 5: Box plot of the quality of different tools. HWMCC denotes
1000 1000 the quality of the problems from HWMCC 2015-2017.
) 30000 60000 90000 s 30000 60000 90000
B.CAR ¢F.CAR #PDR @IC3
Forward CAR Backward CAR I
7000 S 7000 . 5 3
2 R
£ =
5000 5000 2 £ 8
~ R
< s
3 s
3000 3000 2 g g
s =%
g
LE oMo — 0o e —
1000 1000 0 2000 4000 6000 0 2000 4000 6000
0 0 Backward CAR solving time IC3ref solving time
0 30000 60000 90000 0 30000 60000 90000

Fig. 4: The performance of AIGROW on different model checkers
with different parameter settings. The meaning of x-axis/y-axis
is the same as that in Fig[3]

produced by AIGROW, focusing on two critical criteria: (1)
compactness, which ensures that problems are easy to inspect
and analyze, and (2) diversity, which enables broad diagnostic
coverage. Together, these properties determine whether gen-
erated benchmarks are practically useful for exposing and
studying performance differences between model checkers.

Compactness. Compact yet difficult benchmarks are ideal
for tool developers: they stress-checker capabilities while
remaining understandable. To quantify this, we define a quality
metric combining solving time and size:

. solving time
quality =

latch nums + AND gate nums

Higher values indicate problems that are both small and hard.

We select the top 50 problems (ranked by the solv-
ing time) on each checker generated in RQI and compare
against AIGFUZZ and AIGEN. This ensures a consistent basis
for evaluating benchmark quality—defined by difficulty and
compactness—which is more informative for diagnosis than
raw quantity. Table [[1If shows that ATGROW produces problems
that are over 100 times smaller than those of other tools, while
maintaining or exceeding their difficulty levels. This compact-
ness arises naturally from AIGROW’s incremental generation
process, which builds complexity from minimal circuits rather
than mutating large designs. On PDR and Forward CAR in
particular, ATGROW achieves both higher average solving time

(a) Forward vs Backward CAR

(b) PDR vs IC3ref

Fig. 6: Comparison of the solving time of different checkers,
with problems represented by different colors and shapes. Points
close to the diagonal suggest that both checkers exhibit similar
performance, while points farther from the diagonal reveal
performance disparities.

and dramatically reduced size — confirming its ability to
isolate “minimal hard cases.”

Fig.] compares the quality metric across tools and also
includes HWMCC 2015-2017 as a gold standard. ATGROW
matches the quality of HWMCC cases while using only a
fraction of the structural resources, reinforcing its practical
advantage for diagnosis-focused applications.

Revealing Performance Differences. In addition to being
compact, benchmarks generated by AIGROW are effective
at highlighting performance discrepancies between model
checkers — even when the tools implement similar algorithms.

Fig. [6] compares solving times between pairs of checkers.
Each point represents a benchmark, with coordinates deter-
mined by the solving time of each checker. Points close to
the diagonal indicate similar performance, while those far
from it reveal disparities. The upper-right region of each plot
corresponds to benchmarks that are difficult for both checkers.
AIGROW applies a filtering step to discard these cases, as
they offer little insight into performance differences. Instead,
it retains benchmarks located away from the diagonal and
outside the timeout region, which are selectively difficult for
one checker but not the other, and are therefore highly effective
at revealing performance issues for in-depth diagnosis.

o o @} o
f/ %S’ ‘E =5 %\{\’S\I pe «é&
o R3S LEBLELL iy
5\5{1)?(%{@ f (aéfdoii \i;fa C T
822852° 2 $Tspeeee” JLis
7 ¢ §
s b
(a) PDR (b) IC3ref (c) Forward CAR (d) Backward CAR

Fig. 7: The generation procedures of the top-10 hard-to-solve
benchmarks (the leaf nodes). In addition to the deepest blue leaf
nodes, a branch node representing a timeout AIG is also marked
in deep blue. The darker color represents the longer solving time.
The node is white when the solving time is less than 1 second.

This design choice is crucial for the diagnostic goal of
AIGROW. For example, Fig. [6a] shows that Forward and Back-
ward CAR exhibit complementary behavior: several bench-
marks are easy for one and hard for the other. A similar
pattern is observed in Fig. where differences between
PDR and IC3ref emerge clearly. These off-diagonal instances
serve as ideal test cases for understanding implementation-
level differences.

Moreover, AIGROW generated 53 problems that remained
unsolved within 7,200 seconds by all four checkers. While
these cases are not included in the final revealing set due to
their lack of differentiation, they form a valuable side product
for developers who are interested in generally hard problems.

Problem Diversity. Beyond size and difficulty, structural
variety ensures that problems test different reasoning paths
in checkers. Fig. [/| illustrates the generation trees for the
top 10 hardest problems per checker. Each node represents
a generated AIG, with color denoting solving time. The figure
shows that hard problems are not evolved from a single seed
but stem from a diverse set of ancestors — many of which
are trivially solvable. This branching behavior indicates that
ATIGROW explores multiple structural trajectories, and that
small changes can lead to large differences in difficulty —
a property valuable for robustness testing. In several cases,
a simple mutation causes a sudden leap in solving time,
suggesting that ATGROW may help uncover fragile points in
the checker’s strategy.

We conclude that ATGROW generates high-quality prob-
lems that effectively highlight performance differences
between model checkers and are useful for analyzing and
optimizing model checkers.

RQ3: How does retaining safe cases affect the generation
of challenging verification problems?

In Section we established that mutating a safe case can
only yield another safe case. While this ensures correctness,
it is unclear how retaining safe cases affects the generation of
challenging verification problems. To answer this, we conduct
an ablation study in which we retain safe cases in the genera-
tion process for further extension. This allows us to isolate

TABLE IV: The number of challenging (unsolved within 1 hour)
problems generated by different tools in 24 hours. AIGROW-safe
denotes AIGROW in which safe cases are retained.

ABC-PDR IC3ref FCAR B.CAR
AIGROW 10 2 10 5
ATIGROW-safe 8 0 4 0

TABLE V: Challenging problems generated, along with solving
time and parent status. All challenging problems originate from
unsafe parents.

Checker ProblemID Time (s) ParentStatus
F.CAR fcar-697 3819.33 Unsafe
F.CAR fcar-711 7200.00 Unsafe
F.CAR fcar-726 7200.00 Unsafe
F.CAR fcar-875 7200.00 Unsafe
ABC-PDR abcpdr-681 7200.00 Unsafe
ABC-PDR abcpdr-731 7200.00 Unsafe
ABC-PDR abcpdr-736 7200.00 Unsafe
ABC-PDR abcpdr-771 7200.00 Unsafe
ABC-PDR abcpdr-794 7200.00 Unsafe
ABC-PDR abcpdr-797 7200.00 Unsafe
ABC-PDR abcpdr-805 7200.00 Unsafe
ABC-PDR abcpdr-816 7200.00 Unsafe

the impact of discarding safe cases and evaluate whether
unsafe cases are indeed the primary source of challenging
benchmarks.

Specifically, we compare two configurations of our tool:

e AIGROW: Original setup, where only unsafe cases are
retained.

e AIGROW-safe: Modified setup, where safe cases are re-
tained and extended using the same rules as unsafe cases.

Table shows that retaining safe cases (AIGROW-safe)
results in fewer challenging problems across all solvers com-
pared to the original setup (AIGROW). Consequently, discard-
ing safe cases in the original design is justified: it focuses the
generation process on instances that are more likely to chal-
lenge checkers, while retaining correctness. These empirical
results also align with our earlier estimation that extending
safe cases only produces trivially safe instances.

A closer inspection of the challenging problems confirms
that all of them are derived from unsafe parents, as shown
in Table Recall that extending an unsafe case may yield
either a safe or an unsafe instance, whereas mutating a
safe case always yields another safe case. Therefore, if a
challenging instance has an unsafe parent, its entire lineage
must also originate from unsafe cases. This observation further
strengthens the conclusion that unsafe cases are the true drivers
of benchmark difficulty.

Taken together, these ablation results provide strong em-
pirical justification for the original design choice to discard
safe cases. By retaining only unsafe cases for extension, the
generation process effectively produces instances that are more
likely to challenge checkers.]

2Since extending a safe case yields only safe instances, we also used them
as an oracle to test checker soundness. No soundness bugs were detected.

We conclude that retaining safe cases performs worse
than discarding safe cases on generating challenging
benchmarks. Therefore, the design of discarding safe
cases is empirically justified.

RQ4: Can the generated benchmarks help design new
optimizations? Having the revealing problems generated by
AIGROW, we further investigate whether the problems can
help developers improve model checkers. We choose the best
variantE] [39] of SimpleCAR to optimize.

We construct a diagnostic benchmark set by collecting
the 50 most time-consuming problems generated for each of
the four checkers in RQI, resulting in 200 total instances.
Although benchmarks could be generated specifically for a
target tool, we reuse those from RQ1 to demonstrate that the
diagnostic value of AIGROW-generated problems generalizes
across different model checkers, highlighting their broader
utility. SimpleCAR fails to solve 14 of these within the
standard time limit, while other checkers like ABC-PDR could
solve, indicating areas for improvement.

To analyze these cases, we instrument SimpleCAR with
probes that log multi-dimensional statistics during execution,
including the sizes of O- and U-sequences, SAT query behav-
ior, and clause-learning metrics. Thanks to the compact size
of ATGROW-generated problems, the search process proceeds
quickly, and performance bottlenecks are more easily exposed.
In particular, we observe cases where sequence sizes grow
unexpectedly large or query behavior fluctuates significantly.

Based on these observations, we propose and implement
several targeted optimizations for the model checker:

o Traversal Order in U-Sequence: In some cases, the
U-sequence grows rapidly, slowing down the search.
Moreover, redundant exploration within a single round
can stall progress. To address this, we experiment with
alternative strategies for prioritizing U-states: (i) prioritize
initial states, (ii) prioritize states that produced more unsat
cores in previous rounds, and (iii) prioritize states with
more descendants across the search history.

o Proof Obligation Container: The default LIFO stack
sometimes causes starvation of older states. We replace
the stack with a priority queue that selects the state with
the smallest target frame index, enabling more balanced
and strategic exploration.

o Clause Reduction Frequency.: SAT query performance
was observed to vary with the clause database size. We
tune the clause reduction frequency parameter (r = 1/n)
to find a better trade-off between clause retention and
propagation overhead.

We evaluate all optimization variants on the 318 public
benchmarks from HWMCC’24 [4]. Table reports the

3It is a key component of the multi-core checker SuperCAR, which has
recently won a bronze medal in the HWMCC’24 competition [4]. Unless
otherwise specified, all references to SimpleCAR in this RQ refer to this
best-performing variant.

=
S
@

=
19
=)

=
N
G

g
=}
S

0.75 4

avg #(UC) generated / state

o
o
o

6 Zb 4b éO éO 160 12‘0
Rounds
Fig. 8: Runtime statistics of pdr_101. The average number
of UCs generated per state decreases steadily, indicating
redundancy.

number of additional problems solved compared to the origi-
nal baseline. Each category yields measurable improvements:
traversal-based heuristics add up to 6 new safe cases, container
changes improve the performance, and clause reduction tuning
uncovers both safe and unsafe problems. When combined
under a virtual-best configuration, these optimizations solve
18 more benchmarks, including 3 additional unsafe ones.

These results demonstrate that ATGROW-generated problems
are not only diagnostically useful but can also directly inform
the design of impactful optimizations. Furthermore, those
optimizations generalize to real-world benchmarks, confirming
their broader applicability.

We conclude that the problems generated by ATGROW are
valuable to model checker developers and can help them
design new useful optimizations.

V. CASE STUDY: HOW A TINY GENERATED PROBLEM LED
TO AN ALGORITHMIC BREAKTHROUGH

This case study demonstrates how AIGROW facilitates al-
gorithmic innovation by generating compact yet challenging
benchmarks that expose inefficiencies hidden in large-scale
benchmarks. [| We describe how a minimal instance produced
by AIGROW revealed a critical weakness in a state-of-the-art
CAR-based model checker, leading to a new traversal strategy
that significantly improved its performance.

Discovery and Diagnosis. During the experiments in RQI,
a small benchmark named pdr_lOlE] was generated under
the guidance of the ABC-PDR checker. Despite containing
only 4 inputs, 28 AND gates, and 152 latches, it consistently
triggered a timeout in a competitive CAR-based checker [39],
even under a 3600-second time limit. In contrast, other solvers
were able to verify it efficiently. This anomaly prompted a
detailed diagnostic analysis.

4The optimization described in this section is implemented on the same
version of the checker evaluated in RQ4. It serves as a detailed example of
one category (traversal order) explored in that study.

S5This case is chosen for exposition. The anomalous behavior was observed
in other generated benchmarks as well.

TABLE VI:

parallel running and taking the best.

| Safe | Unsafe
Approach | #(solved) Gain/Loss | #(solved) Gain/Loss

Basic | 106 S /
Pick-Init 112 10/4 26 2/2
PickOrder Pick-UC 112 ! 26 0/0
Pick-Desc 111 6/1 25 12
Container | PriorityQueue | 108 2/0 | 26 0/0
n=1 103 2/5 24 0/2
n=1.4 106 3/3 27 1/0

n=1.8 110 5/1 25 0/1

i -1

ReduceRatio 7= 3, n=4 106 2n 26 0/0
n=8 107 2/1 26 0/0
n=16 109 4/1 26 0/0

Virtual Best | 121 / | 29 /

Results of optimizations on the HWMCC’24 set. ‘Basic’ refers to the best variant of forward CAR checker [39].
‘PickOrder’, ‘Container’ and ‘ReduceRatio’ refers to the three categories of optimization, respectively. ‘Virtual Best’ refers to

To diagnose the issue, we instrumented the model checker
with probes to record key metrics during the verification
process. These metrics included the number of visited U-
sequence states and the number of unsatisfiable cores (UCs)
generated in each iteration. One particularly revealing metric
was the average number of UCs generated per U-sequence
state per round. As shown in Fig. [§] the average number
of UCs generated per state generally decreases over time.
Although the number of visited U-states continues to grow,
the number of distinct UCs saturates. This suggests that many
new states do not contribute meaningful refinements to the
O-sequence but incur non-negligible overhead.

This finding challenges a common assumption in CAR
model checking: that growing the U-sequence necessarily
improves convergence. Instead, pdr_101 revealed that un-
selective expansion introduces redundant states, leading to
slower progress.

Proposed Optimization. To address this issue, we intro-
duced a dynamic traversal strategy called PickUC. The idea
is to prioritize U-states that have historically produced more
distinct unsat cores, under the hypothesis that they are more
likely to contribute meaningful refinements. States with lower
UC generation are deprioritized or skipped.

We implemented this strategy as a variant of the checker,
referred to as CAR-DT, and tested it on pdr_101. Table [VI]]
shows the result: while the original implementation timed
out after reaching frame 275 and generating 79,751 UCs,
the optimized version completed the proof in 166 seconds,
reaching frame 412 and producing 57,875 UCs — over 70%
of the total UCs from the 1-hour baseline.

Impact Across Benchmarks. We applied CAR-DT to
additional ATGROW-generated problems that exhibited similar
saturation patterns. Table shows consistent improvements,
often reducing runtime from timeouts to under 10 minutes.

To evaluate generalizability, we ran CAR-DT on a set
of real-world benchmarks from the HWMCC’24 benchmark
suite [4]. As shown in Table the optimized version

TABLE VII: Detailed runtime comparison on pdr_101.

Original CAR CAR-DT (PickUC)

Runtime > 3600 s (timeout) 166 s
Final Frame Reached 275 412 (proved safe)
Total # of UCs 79,751 57,875

TABLE VIII: Impact of CAR-DT optimization inspired by
pdr_101.

Benchmark #(And+Latch) Original CAR (s) CAR-DT (s)
pdr_97 40 + 204 timeout 130.03
pdr_103 39 + 169 timeout 464.58
fcar_153 58 + 180 856.23 109.16
ic3ref_487 18 + 53 2333.53 633.04
ic3ref_560 16 + 55 3185.52 2.15

achieved up to 4.55% more problem completions. Even when
both versions succeeded, CAR-DT typically solved problems
faster.

Conclusion. This case study highlights how AIGROW en-
ables algorithmic advances by generating small, diagnosable
problems that reveal performance pathologies in otherwise
mature tools. In this instance, it led to the discovery of a re-
dundant traversal pattern in CAR and inspired an optimization
that generalizes to broader benchmarks.

VI. RELATED WORK
A. Feedback-Guided Generation Tools

Feedback-guided generation dynamically guides test case
creation using runtime feedback. Pioneering work in software
testing, such as Eclat [32]] and Randoop [34], [35], demon-
strated the effectiveness of this approach for generating behav-
iorally diverse test cases. Subsequent efforts enhanced feed-
back mechanisms: GenRed [27] integrated coverage-guided
diversification, while Garg et al. [19] combined feedback with
concolic execution to improve test driver quality.

In hardware model checking (HWMC), Hammer [43|] adapts
feedback-guided techniques to mutate existing benchmarks,
exposing bugs in model checkers. While Hammer represents

TABLE IX: Performance comparison on latest HWMCC
benchmarks.

HWMCC’24 Benchmark Original CAR (s) CAR-DT (s)
ILA-Piccolo-BEQ-sanity > 3600 (timeout) 3397.90
ILA-Piccolo-BGEU-sanity > 3600 (timeout) 3519.51
Problem05-label42+token-ring.08.cil-2 > 3600 (timeout) 2883.56
Problem10-label08 > 3600 (timeout) 2812.81
al6-pl48 > 3600 (timeout) 1870.37
brp2.3.prop2-func-interl > 3600 (timeout) 1310.36
gspiflash-dualflexpress-divfive-p162 > 3600 (timeout) 1156.33
yosyshg-appnote- 123-cv32e40x-p500 > 3600 (timeout) 2099.85
yosyshqg-appnote-123-cv32e40x-p502 > 3600 (timeout) 2774.43
yosyshq-appnote-123-veer-axi-p62 > 3600 (timeout) 121.03

a significant advancement in HWMC testing, its mutation-
based strategy has critical limitations: (1) it relies on fixed
input seeds, restricting diversity and scalability; (2) generated
benchmarks are non-compact, hindering developer adoption
due to bloated instance sizes; and (3) it provides no guarantee
on the validity of the generated cases. A direct experimental
comparison with Hammer would be methodologically un-
sound: their mutation-based approach critically depends on
seed corpus quality, whereas our generation-first paradigm
eliminates such dependency. Furthermore, Hammer’s outputs
require post-hoc filtering to remove invalid cases [43]], while
our method guarantees semantic validity by construction. Any
comparison would either (1) use non-optimized seeds (unfair
to Hammer) or (2) introduce bias via curated seeds, thus
precluding rigorous evaluation.

Our work diverges fundamentally: instead of mutating
seeds, we employ a generation-first feedback-guided approach.
This strategy eliminates seed dependency, ensures semantic
validity by construction, and systematically optimizes for com-
pact and challenging problems, which addresses Hammer’s
key shortcomings. Furthermore, our reliance on generic run-
time feedback (time and status) makes the ATGROW approach
more readily generalizable across different model checking
paradigms compared to tools reliant on domain-specific mu-
tations or oracles.

B. Hardware Model Checking Benchmark Generators

Existing HWMC-specific generators prioritize scalability
over benchmark quality. AIGEN [26] produces syntactically
valid benchmarks but lacks mechanisms to ensure challenge,
often generating trivial cases. Furthermore, its outputs are
not compact, limiting practical utility. Fuzzing tools like
AIGFUZZ [1]] and Fuzz-btor2 [40] focus on detecting model
checker bugs via large-scale input exploration. While they
support diverse gate types and coverage metrics, their outputs
are inherently bloated, as they prioritize volume over mini-
mality. The hardness of their generated instances often stems
from the large size (e.g., triggering state sequence explosion in
checkers like Backward CAR) rather than nuanced structure.
Such benchmarks are unsuitable for use cases requiring human
analysis, such as developer-authored case studies.

Our tool bridges this gap by generating compact yet chal-
lenging benchmarks through a novel mutation strategy. Unlike
prior mutation-based tools like Hammer that require existing

seed instances as input, we mutate primitive components rather
than pre-defined complex cases. This allows us to construct
benchmarks from scratch while preserving semantic validity
through constrained expansion rules.

Our feedback mechanism is uniquely driven by solver
runtime—a direct proxy for problem difficulty. By iteratively
mutating components and selecting variants that maximize
solver time, we systematically evolve simple initial structures
into compact yet challenging benchmarks. Crucially, this elim-
inates the need for post-hoc filtering (e.g., cyclic dependency
detection in Hammer), as our mutation process inherently
avoids generating semantically invalid cases.

C. Testing Verification Tools

The reliability of verification tools is critical for safety-
critical systems. Recent efforts to test software model checkers
include differential testing [29]] and reachability-guided fault
injection [42]. For hardware verification, Kaufmann et al.
[28]] uncovered multiplier verification flaws using mutation-
based fuzzing. However, these methods depend on high-quality
benchmarks to reveal deep flaws—a requirement unmet by
prior generators like Hammer and AlGen.

Our benchmarks address this need: their compactness en-
ables rapid iteration, while their inherent complexity stresses
model checkers more effectively than prior tools. This combi-
nation supports both bug detection and performance profiling,
advancing the state of verification tool testing.

VII. CONCLUSION

This experience paper presents ATGROW, a framework for
generating hardware model checking problems that are both
compact and challenging—a combination essential for diag-
nosing performance differences among model checkers. Unlike
prior tools that focus on maximizing structural complexity or
randomness, AIGROW is explicitly designed to support fine-
grained analysis of model checker behaviors.

By guiding problem construction with runtime feedback
and reducing the discovery of performance divergence to a
one-checker-driven search followed by multi-checker filtering,
AIGROW efficiently identifies instances that are difficult for
one tool but easy for others. This diagnostic framing is critical
for uncovering the potential optimization opportunities.

Our experiments show that ATGROW produces orders-of-
magnitude smaller problems than the problems generated by
existing generators, while still exposing significant perfor-
mance discrepancies. These problems are not only useful
for empirical evaluation, but have already driven algorithmic
improvements—Ileading to optimizations that solve previously
intractable problems and reveal long-hidden bottlenecks.

All our implementations and generated problems can be
accessed from the GitHub [21]] and Zenodo [15].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. We sincerely thank Manuel Rigger for his valuable
suggestions on improving the work and thank Xueying Du
for her assistance in adjusting and improving the figures.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

REFERENCES

AIGER, http://fmv.jku.at/aiger/

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking
without bdds. In: Cleaveland, W.R. (ed.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 193-207. Springer Berlin
Heidelberg, Berlin, Heidelberg (1999)

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Handbook of satisfiability 185(99), 457-481 (2009).
https://doi.org/10.3233/978-1-58603-929-5-457

Biere, A., Froleyks, N., Preiner, M.: Hardware model checking com-
petition 2024. In: Narodytska, N., Riimmer, P. (eds.) Proceedings
24th International Conference on Formal Methods in Computer-
Aided Design (FMCAD’24). p. 7. TU Wien Academic Press (2024).
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5_6

Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech.
Rep. 11/2, Institute for Formal Models and Verification, Johannes Kepler
University, Altenbergerstr. 69, 4040 Linz, Austria (2011)

Bradley, A.R.: SAT-based model checking without unrolling.
In: International Workshop on Verification, Model Checking,
and Abstract Interpretation. pp. 70-87. Springer (2011).

https://doi.org/https://doi.org/10.1007/978-3-642-18275-4_7

Bradley, A.R.: SAT-based model checking without unrolling. In: In-
ternational Workshop on Verification, Model Checking, and Abstract
Interpretation. pp. 70-87. Springer (2011)

Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength
verification tool. In: Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. pp. 24-40. Springer (2010)

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A.,
Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic
model checker. In: Proceedings of the 16th International Conference
on Computer Aided Verification. p. 334-342. Springer-Verlag, Berlin,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-08867-9_22
Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv:
a new symbolic model checker. International Journal on
Software Tools for Technology Transfer 2(4), 410-425 (2000).
https://doi.org/https://doi.org/10.1007/s100090050046

Clarke, E., Gupta, A., Jain, H., Veith, H.: Model Checking: Back and
Forth between Hardware and Software, pp. 251-255. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

Clarke, E.M., Emerson, E.A., Sistla, A.P.. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS) 8(2),
244-263 (1986)

Dong, Y., Chen, Y., Li, J., Pu, G., Strichman, O.: Revisiting assumptions
ordering in car-based model checking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2025)

Dong, Y., Wu, X., Li, J., Pu, G., Strichman, O.: Accelerating car-based
model-checking with multiple unsatisfiable cores (2025)

Dong, Y, Xu, Y. Deng, W. Docker image (Aug 2025).
https://doi.org/10.5281/zenodo.16948503

Dong, Y., Zhang, X., Xu, Y., Cai, C., Chen, Y., Miao, W., Li, J., Pu, G.:
Lightf3: A lightweight fully-process formal framework for automated
verifying railway interlocking systems. In: Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. p. 1914-1925. ESEC/FSE 2023,
Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3611643.3613874

Fioraldi, A., Maier, D., Eiffeldt, H., Heuse, M.: Afl++: combining
incremental steps of fuzzing research. In: Proceedings of the 14th
USENIX Conference on Offensive Technologies. WOOT’ 20, USENIX
Association, USA (2020)

Fix, L.: Fifteen Years of Formal Property Verification in Intel,
pp. 139-144. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0_8

Garg, P, Ivanci¢, F.,, Balakrishnan, G., Maeda, N., Gupta, A.: Feedback-
directed unit test generation for c/c++ using concolic execution. In:
ICSE. pp. 132-141 (2013)

[20]

[21]
[22]

[23]
[24]

[25]
[26]

(27]
[28]
[29]

[30]

(31]
[32]

[33]

[34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

Gerth, R.: Model checking if your life depends on it: a view from intel’s
trenches. In: Dwyer, M. (ed.) Model Checking Software. pp. 15-15.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

Artifact. https://github.com/AnonymousAccO-O-O/AIGROW-artifact
Griggio, A., Roveri, M.: Comparing difterent variants of the 1c3 algo-

rithm for hardware model checking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35(6), 1026-1039
(2015)

HWMCC 2015. http://fmv.jku.at/hwmecl5/| (2015), http://fmv.jku.at/
hwmccl5/

HWMCC 2017. http://fmv.jku.at/hwmecl7/ (2017), http:/fmv.jku.at/
hwmccl17

IC3Ref. https://github.com/arbrad/IC3ref

Jacobs, S., Sakr, M.: Aigen: Random generation of symbolic transition
systems. In: Computer Aided Verification: 33rd International Confer-
ence, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II
33. pp. 435-446. Springer (2021)

Jaygarl, H., Lu, K., Chang, C.K.: Genred: A tool for generating and
reducing object-oriented test cases. In: COMPSAC. pp. 127-136 (2010)
Kaufmann, D., Biere, A.: Fuzzing and delta debugging and-inverter
graph verification tools. In: TAP. vol. 13361, pp. 69-88 (2022)
Klinger, C., Christakis, M., Wiistholz, V.: Differentially testing sound-
ness and precision of program analyzers. In: ISSTA. pp. 239-250 (2019)
Li, J., Dureja, R., Pu, G., Rozier, K.Y., Vardi, M.Y.: Simplecar: An effi-
cient bug-finding tool based on approximate reachability. In: Computer
Aided Verification: 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part II 30. pp. 37-44. Springer (2018)

Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety model checking
with complementary approximations. In: ICCAD. pp. 95-100 (2017)
Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification
of test inputs. In: ECOOP. vol. 3586, pp. 504-527 (2005)

Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing
for java. In: Companion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion.
p- 815-816. OOPSLA ’07, Association for Computing Machinery, New
York, NY, USA (2007). https://doi.org/10.1145/1297846.1297902
Pacheco, C., Lahiri, S.K., Ball, T.: Finding errors in. net with feedback-
directed random testing. In: ISSTA. pp. 87-96 (2008)

Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: ICSE. pp. 75-84 (2007)

Schnoebelen, P.: The complexity of temporal logic model checking.
Advances in modal logic 4(35), 393-436 (2002)

Su, Y., Yang, Q., Ci, Y.: Predicting lemmas in generalization of ic3.
In: Proceedings of the 61st ACM/IEEE Design Automation Conference.
DAC 24, Association for Computing Machinery, New York, NY, USA
(2024). https://doi.org/10.1145/3649329.3655970

Su, Y, Yang, Q., Ci, Y., Li, Y., Bu, T., Huang, Z.: Deeply optimizing
the sat solver for the ic3 algorithm. arXiv preprint arXiv:2501.18612
(2025)

Xia, Y., Becchi, A., Cimatti, A., Griggio, A., Li, J., Pu, G.: Searching
for i-good lemmas to accelerate safety model checking. In: Enea, C., Lal,
A. (eds.) Computer Aided Verification. pp. 288-308. Springer Nature
Switzerland, Cham (2023)

Xiao, S., Zhang, C., Li, J., Pu, G.: Fuzzbtor2: A random generator of
word-level model checking problems in btor2 format. In: International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 36—43. Springer (2023)

Yu, E., Biere, A., Heljanko, K.: Progress in certifying hardware
model checking results. In: Computer Aided Verification. pp. 363-386.
Springer International Publishing, Cham (2021)

Zhang, C., Su, T, Yan, Y., Zhang, F,, Pu, G., Su, Z.: Finding and
understanding bugs in software model checkers. In: ESEC/FSE. pp. 763—
773 (2019)

Zhang, C., Sun, M., Li, J., Su, T., Pu, G.: Feedback-guided circuit
structure mutation for testing hardware model checkers. In: ICCAD
(2021)

http://fmv.jku.at/aiger/
https://github.com/AnonymousAccO-O-O/AIGROW-artifact
http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc17/
http://fmv.jku.at/hwmcc17
http://fmv.jku.at/hwmcc17
https://github.com/arbrad/IC3ref

	Introduction
	Preliminary
	The AIGROW Framework
	Motivation and Framework Design
	Illustrative Example
	Generation Process
	Expanding Process
	Assessing Process
	Retaining Process

	Evaluation
	Evaluation Setup
	Evaluation results

	Case Study: How a Tiny generated problem Led to an Algorithmic Breakthrough
	Related Work
	Feedback-Guided Generation Tools
	Hardware Model Checking Benchmark Generators
	Testing Verification Tools

	Conclusion
	References

