N)
)
Check for
updates

LightF3: A Lightweight Fully-Process Formal Framework for
Automated Verifying Railway Interlocking Systems

Yibo Dong" Yicong Xu Weikai Miao
Xiaoyu Zhang" Chang Cai Jianwen Li'
East China Normal University Yu Chen Geguang Put#
Shanghai, China East China Normal University East China Normal University
Shanghai, China Shanghai, China

ABSTRACT

Interlocking has long played a crucial role in railway systems. Its
functional correctness, particularly concerning safety, forms the
foundation of the entire signaling system. To date, numerous efforts
have been made to formally model and verify interlocking systems.
However, two main problems persist in most prior work: (1) The
formal description of the interlocking system heavily depends on
reusing existing models, which often results in overgeneralization
and failing to fully utilize the intrinsic characteristics of interlocking
systems. (2) The verification techniques of current approaches may
quickly become outdated, and there is no adaptable method to
integrate state-of-the-art verification algorithms or tools.

To address the above issues, we present LIGHTF3, a lightweight
and fully-process formal framework for modeling and verifying
railway interlocking systems. LIGHTF3 provides RIS-FL, a formal
language based on FQLTL (a variant of LTL) to model the sys-
tem and its specifications. LIGHTF3 transforms the RIS-FL model
automatically to the aiger model, which is the mainstream input
of state-of-the-art model checkers, and then invokes the most ad-
vanced checkers to complete the verification task. We evaluated
LiGHTF3 by testing five real station instances from our industrial
partner, demonstrating its effectiveness as a new framework. Addi-
tionally, we analyzed the statistics of the verification results from
different model-checking techniques, providing useful conclusions
for both the railway interlocking and formal methods communities.

CCS CONCEPTS

« Software and its engineering — Software notations and
tools.

KEYWORDS
Formal Methods, Interlocking Systems, Model Checking

“Both authors contributed equally to this research.
t corresponding author
* Also with Shanghai Trusted Industrial Control Platform Co., Ltd.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 39, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12...$15.00
https://doi.org/10.1145/3611643.3613874

1914

ACM Reference Format:

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao,
Jianwen Li, and Geguang Pu. 2023. LightF3: A Lightweight Fully-Process
Formal Framework for Automated Verifying Railway Interlocking Systems.
In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’23), December 3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3611643.3613874

1 INTRODUCTION

An interlocking system is a control system responsible for guiding
the trains safely through the railway network in accordance with
traffic regulations and disciplines. By continuously maintaining the
state of devices , the interlocking system determines whether it is
safe to perform certain operations, such as allowing the train to
enter a specific track. Additionally, by controlling active elements,
the interlocking system serves as a vital interface between trains
and other railway components (as shown in Fig. 1). Therefore, the
functional correctness of the interlocking system, especially safety
correctness, is crucial to the entire signal system and must meet a
high safety integrity level (SIL4) [22].

Despite the importance of ensuring safety, many railway com-
panies still rely on manual testing and simulation due to a lack of
efficient and cost-effective mechanisms for verifying safety proper-
ties. Though formal methods [35] have shown promise, the complex
professional background and universal confidentiality of the rail-
way industry make it difficult to apply these techniques. As a result,
most research [13, 50] focuses on specific station cases with mod-
erate scale or simple properties.

Moreover, prior works on formally verifying interlocking sys-
tems have mainly adopted fixed verifiers and attempted to reuse
existing models like SMV [12] or transform into them [17], typi-
cally by feeding them into third-party IDEs [24]. This approach
is difficult to extend and eliminates the possibility of reserving
instance-oriented quantifiers along with past operators, which are
both crucial components for complex practical properties not sup-
ported in existing models. Safety properties in interlocking sys-
tems, originating from a common discipline, distinguish themselves
from those in other domains in that they are highly homogeneous
both inter-station and intra-station. Manually writing repetitive
and error-prone low-level properties falls far behind writing a few
generic properties and instantiating them according to detailed data.
Furthermore, without past operators, time-sensitive properties may
be beyond expression. Regarding verification techniques, existing
verifiers generally employ bounded model checking [7] as the core
technique. While this approach is efficient in finding shallow bugs,

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3613874
https://doi.org/10.1145/3611643.3613874
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3613874&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

[2]
a

!_> Human-Computer Interaction
B

l T
Interlocking System

&G

Figure 1: Electronic Based Interlocking system

N
% LLG/HTFB
=+ >

o R3e ®
I i 1 ¢

NS
M

Safe

s <> w
= QU ==
B &

RIS-FL Model Formal Model Model Checking @®

Portfolio

Counter Example

8z Fomal (A) Automated Semi-Automated > Transit T Guide

Figure 2: The Schema of LicHTF3

state-of-the-art verifiers like CAR [42] and IC3/PDR [11, 18, 21]
have demonstrated superior performance under different circum-
stances. However, there is currently no convenient way to plug
them in or reconfigure them according to the verification result.
In our opinion, the model of the interlocking system can be rep-
resented as an acyclic graph constructed based on the topology of
the track layout, along with a set of rules that describe the rela-
tionships among the devices. The devices, each having unique IDs
and various attributes, are represented as vertices, while the rules
are represented as edges connecting the vertices. For example, ‘A
switch s; is in the track #;” can be expressed as the ‘BelongToTrack’
attribute of s; being ‘#1’, and the corresponding rule ‘s; should be
in track t;’ will then be specified as ‘s;.BelongToTrack == t;’. On
this basis, the interlocking system can be seen as a graph with rich
information stored in its vertices. Alternatively, one can regard it
as a circuit-like system with a moderate scale. The verification of
such system is a prevalent subject in hardware model checking.
We propose a framework called LightF3 for automated verifi-
cation of railway interlocking systems (Fig. 2). The term "Light"
indicates that it does not involve translation into a more complex
and general model; it also reduces the difficulty of writing formal
properties, making it easy for production personnel to use. Addi-
tionally, plug-and-play is supported for any aiger-based work-of-art
verifier, making the cost of trying out the latest verifier insignificant.
The triple "F" denotes "Fully-process Formal Framework," which is
its distinguishing feature. After writing the RIS-FL model, all subse-
quent procedures, including model transformation and verification,
are formal. Based on the recently proposed Finite Quantifier Linear

1915

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

Temporal Logic(FQLTL) [16], we establish a formal language called
RIS-FL (short for Railway Interlocking System Formal Language)
to describe the model and write generic properties. Furthermore,
we provide users with a user-friendly interface in LightF3. These
generic properties do not specify particular devices and should be
written in accordance with traffic regulations. As a result, they can
be shared among different stations. Concrete properties are gener-
ated by instantiating them with detailed station-specific application
data for further verification. With an extensible and re-configurable
verification portfolio, different properties can be efficiently verified
based on their aptitude.

We invited our industrial partners to try out LIGHTF3, and with
a moderate amount of effort to learn how to write formal specifica-
tions and translate their station data, they were able to successfully
verify practical stations of various sizes. The largest station had
around sixty tracks and fifty switches with over 200 routes. Through
the use of LiIGHTF3, we helped them discover errors in their prior
natural language specifications and encouraged them to clarify rel-
evant concepts for their employees. Overall, our partnership with
them was a success, and they were pleased with the results.

Novelty. We provide the following contributions:

o A fully-process formal framework LIGHTF3 that :

— proposes a formal language RIS-FL and allows writing
formal descriptions at a moderate cost.

— effectively transits to model checking problem.

— can carry any latest aiger-based [6] verifiers to solve in-
terlocking system problems.

o Investigate the performance of various model-checking tech-
niques in interlocking contexts, conclusions of which benefit
both industry and academia.

e Pose an example benchmark, which takes an interlocking
system as the background, to facilitate researchers who are
interested in practical interlocking problems.

2 RELATED WORK

There have been numerous efforts to apply formal methods and
tools for ensuring the correctness of railway system designs [24, 35].
In the early days, general-purpose models such as UML [44], state
machines (or automata) [15], and Petri-Nets [43] were used, which
posed scalability issues. More successful applications emerge by
introducing the B method [4], SMV [12] as the modeling language,
with which powerful tools like ProB [38] and NuSMV [17] can
verify the obtained models in an efficient way. Nevertheless, these
methods are still too generic to depict dedicated features of inter-
locking systems. For example, the B method cannot handle the
temporal information well while SMV lacks the (direct) support
for metric temporal information and finite domains. For existing
domain-specific solutions, SafeCap [30-32] aims at modeling the
whole railway network, making it redundant to use on interlock-
ing systems. Also, railML [14] is a sufficient domain language to
describe an interlocking system, while it is semi-formal [47] and
proposes to utilize SAML [27], which is a formal language with
limited support for temporal reasoning, to formalize railML models.
Finally, the ladder logic [9, 34] is widely used in commercial tools
like Prover ILock [10] and SCADE [36], which may be the best op-
tion to model interlocking systems to date. However, Ladder logic

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems

may express limited temporal options by using the latch variables
only.

Towards the specifications of interlocking systems, previous
works mainly use pure propositional logic [20] or variants of LTL [40,
48] to formalize from different levels. However, most of them do not
consider extending LTL to describe generic properties suitable for
the same types of devices in the system, i.e., by introducing quan-
tifiers over variables. Although [28] allows the quantifiers, they
can be only affiliated to the bound variables for bounded model
checking. Also, the LTL versions supported in the SMV language
do not include quantification.

Model checking [19] and theorem proving [5] are two main verifi-
cation techniques for interlocking systems. While theorem-proving
B models have gained success in practice, a lot of artificial efforts
are required to complete the proving. Meanwhile, model checking
can be achieved automatically once the model and properties are
prepared, which is more promising in the view of industrial appli-
cations. Indeed, series of works [28] rely on model checking tech-
niques like BMC [7], K-induction [50] and IC3/PDR [18] to verify
the interlocking system. However, most of them consider integrat-
ing such algorithms inside their methodology, running upon their
self-defined models. The cost can become heavy when considering
integrating new model-checking techniques instead of leveraging
state-of-the-art third-party model checkers, e.g., SimpleCAR [39],
IC3-ref [2], AVY [49] etc.

Our framework LiGHTF3 is distinguished from others in the fol-
lowing aspects. (1) LIGHTF3 uses the RIS-FL modeling language
which has FQLTL underlined and is more dedicated to modeling
railway systems rather than B, SMV, and SAML languages as well
as the Ladder Logic; (2) Once the RIS-FL model is created, the
left verification process is fully automated, including the prop-
erty/constraint instantiation that is specific to interlocking systems;
(3) Finally, LigHTF3 is lightweight and flexible because it leverages
the Aiger [6] format as the input for model checking, which is
the mainstream nowadays and therefore is easy to import new
model-checking techniques as an aid to efficient verifying.

3 PRELIMINARIES
3.1 First-Order Logic

The syntax of first-order logic is defined relative to a signature
o, which consists of a set of constant symbols, a set of function
symbols, and a set of predicate symbols. Each function and predicate
symbol has an arity k > 0. Formally, a first-order logic formal ¢
has the form of

pu=t|-g|dprAda|P1Va|TIxP|Vx e

where the term t can be a variable, constant symbol, or k-ary func-
tion symbol f(t1,..., ;). The symbol 3 and V refer to existential
and universal quantifier separately.

Given a signature ¢, a o-structure A consists of:

e anon-empty set U called the universe of the structure;
o for each k-ary predicate symbol P in o, a k-ary relation
Py[QUy{X"-XUﬂ;
[——
k

1916

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

o for each k-ary function symbol f in o, a k-ary relation f :
Uy(X-“XUﬂ —>U‘7[;
—_———

k
o for each constant symbol c, an element c 4 of Ug;

o for each variable x an element x # of Ug.

Given a structure A, variable x, and a € U4, we define the struc-
ture A, 4] to be exactly the same as A except that xA[x, 4] = a.
We define the value A] of each term ¢ as an element of the uni-
verse U inductively as follows:

def
e For a constant symbol ¢ we define A[c] = cz:

. def
e For a variable x we define A[x] = x.x;
e For aterm f(ty, ...,), where f is a k-ary function symbol
and t1, ..., fy are terms, we define

ALty ti)] & fa(AL], . AlDD.

We define the satisfaction relation A £ ¢ between a o-structure
A and o-formula ¢ by induction over the structure of formulas.

o AE P(tl,..., tk) iff (ﬂ[[tl]],. ‘.,ﬂ[[tk]]) € Py(;

. ﬂt:¢1/\¢ziffﬂl:¢1andﬂl:¢2;

o AEP1V P iff AE ¢y 0or AE ¢3;

e AE —|¢1 iff A ¥ ¢1;

o Ak Jx ¢y iff there exists a € Ug such that A xq) F 1
o AEVx 1 ff Ajxiq) F p1 foralla € Ug;

3.2 Linear Temporal Logic

LTL was introduced into computer science in the 1970s and is used
in various fields [25, 26, 29, 46, 51]. It uses temporal operators to
express the behavioral constraints that need to be satisfied by a
system at each moment in the past, present, and future. Let AP be a
set of atomic properties, we can define the syntax of LTL formulas:

=T | LIp|l-¢|ld1 A2 |d1 VP2 XP1|d1U2|¢1 R

where p € AP is an atomic proposition; ¢ is an LTL formula; T, L
denote true and false, and X ,U ,R are temporal operators, repre-
senting ‘Next’, ‘Until’ and ‘Release’ respectively.

In LTL, U and R are dual operators, which means $1U¢y =
=(=¢1R~¢2). Also, the following abbreviations are widely used in
LTL:Fa=TUaandGa=1Ra.

Let = = 24F be the set of alphabet and a trace £ = wowiws... be
an infinite sequence in 2“. For £ and k > 0 we use the following
denotations:

o £[k] : the k th element of ¢
. fk = wow1...w_1, the prefix of the trace
® & = WpWky1..-, the later part of the trace

Therefore, £ = £ &, . The semantics of LTL formulas with respect
to the infinite trace & is then given by:

e fETand ¢ |E L

o { = piff p € £[0] where p is an atom;
o {RE it & ¢

o SR G At [g1 and £ = da;

* LEX ¢ iff &1k ¢

e lEQUY iffFi> 0,6 Fy,and V0 < j < i, & | ¢;

o { = ¢RY iffeitherVi > 0,& Fyor,3i>20,& FdAyand
YO<j<i &Y.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

aag4111201
2

47

6

8

625

861

(a) ASCII AIGER

(b) Visualization

Figure 3: Example of an AIG

Above is the standard rTL. Now we define LTLp as LTL with
past operators, e.g., PRE and Since, so that we can make statements
on past time instants.

3.3 Model Checking

3.3.1 And-Inverter Graph. An And-Inverter Graph (AIG) is a di-
rected, acyclic graph designed to represent gate-level hardware
circuits [6]. It is a compact and simple sequential hardware model
designed for model checking competition, as there are only three
basic components inside an AIG: AND gates, inverters and latches.

Fig. 3(a) and 3(b) show the ASCII AIGER format and the rep-
resented circuit of an AIG. Figure 3(a)’s first line is the header,
denoted by ‘aag’ for ASCII format, followed by counts for different
components: total components, inputs, latches, outputs, AND gates,
bad states, and invariant constraints, in that order. Components
are identified by positive even numbers; with the subsequent odd
number representing components with inverter gates. Especially,
the constants 0 and 1 are preserved to represent T and L.

Beginning from Line 2, each of the inputs, latches, outputs, con-
straints, bad properties, and and-gates are listed in order. For ex-
ample, the second line says that the input is denoted as the literal
2, while the third line shows that 4 is the latch and 7 is preserved
as the value of the latch in the next cycle. More information are
referred to [6].

Besides circuits, AIG can also be used to formulate SAT and
model-checking problems. Most modern model checkers support
AIG as their input, and many other forms (like SMV [17]) can be
easily translated to AIG through tools in AIG release.

3.3.2 Model Checking Techniques. Given a transition system Sys =
(V,1,T) (the model) and a safety property P, model checking an-
swers the question that whether all behaviors of the transition
system satisfy the property. If not, a trace from the initial state to
the bad state, in which the property is violated, will be returned as
a counterexample. Otherwise, an invariant containing the initial
state can be found, indicating that the model satisfies the property.

State-of-the-art model-checking techniques like BMC [8], IMC
[45], IC3/PDR [11, 18, 21] and CAR [42], are all SAT-based and
there isn’t a single technique that can dominate others. BMC is the
first technique to introduce SAT [41] into model checking and is
quite efficient in bug-finding, but it is an incomplete approach as it
can’t prove the property. IMC complements BMC by computing
interpolants and maintaining an over-approximate state sequence

1917

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

inside BMC, which enables the construction of a correctness proof.
Compared to BMC and IMC, IC3/PDR and CAR only unroll the
transition relation at most once, which reduces the difficulty of a
single SAT query but increases the total amount of SAT queries.
Notably, CAR has two versions, i.e., Forward CAR and Backward
CAR, which distinguish from each other by search strategy for
the verification. Often, Forward CAR is better to prove correctness
while Backward CAR is more advantageous in finding bugs [39, 42].

3.4 Verification of Interlocking System

In railway signaling, interlocking refers to the arrangement of sig-
nal apparatus to prevent conflicting movements, such as arranging
signals and signal appliances properly. The properties in the inter-
locking system can be divided into two categories: safety properties
and liveness properties [3]. Safety properties aim to ensure that no
unsafe conditions occur, while liveness properties focus on ensur-
ing that the train eventually leaves the station. The primary goal of
interlocking is to ensure safety. Basic safety goals are usually speci-
fied at a high abstract level, and various approaches can be used to
implement them at a specific station. For a specific station, the basic
safety goals are concretized at multiple levels. For instance, abstract
safety rules are first categorized by the type of devices and then
instantiated to concrete properties of specific devices according to
the configuration data. In industrial practice, a control table [23] is
created to represent the possible operations of various components
in the railway yard and enforce the principles and constraints.
An example to define basic safety goals from Denmark [37] is:

e Trains/shunt movements must not collide.
o Trains/shunt movements must not derail.
e Trains/shunt movements must not collide with authorized
vehicles or human beings crossing the railway.
e Protect railway employees from trains.
As to formal verification, we take only the prior three goals into
consideration.

4 LIGHTF3 FRAMEWORK

In this section, we present the structure of LicHTF3. Firstly, we
discuss the general workflow, followed by an illustrative exam-
ple, and then introduce each component separately. The general
organization is depicted in Fig. 4.

The input of the system can be divided into five parts, as shown
in the figure. These parts are then translated to generate a RIS-
FL model, along with a station-specific domain interpretation. The
interpretation guides the instantiation of properties and constraints,
eliminating the quantifiers and creating concrete properties about
specific devices. Typically, one generic property corresponds to
several devices of the same type. These concrete properties together
with the RIS-FL model are then transformed into a common AIGER
model and passed to the model-checking portfolio. If the property
does not hold for the target device, a counterexample is generated.

4.1 Tllustrating Example

We would pose an illustrating example of an interlocking system
here. The raw materials obtained in this study cannot be shared
subject to confidential agreements. Therefore, we would give a
preprocessed model and omit the detailed generation process of

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems

RIS-FL Model

System Design ——> | System
Specification 5 Property —

i Bit-level
Environment : q Instantiate Properties

Constraint > | Constraint and

S Constraints
Track Layout

s Domain

| Interpretation

Configuration

Data

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Figure 4: LightF3 Framework Work-Flow

domain interpretation. With an example track layout (Fig. 5), we
try to verify a simple property:

Example 4.1 (Natural Language Description). If a track that con-
tains switches is released, the following properties should hold:
o The track is logically clear for at least 3 seconds.
o The track is in route released state.
e The track is not route locked or occupied.

And the relevant model may look like this:
Example 4.2 (Relevant Input Model).

P1-R = (P1-LCE & -P1-RR & P1-RLO)

P3-R = (P3-LCE & —P3-RR & P3-RLO)

P1-LCE = GLOBAL [0,3](P1-A)

P3-LCE = GLOBAL [0,3](P3-A)

P1-RR = (P1-B & P1-C)

P3-RR = (P3-B & P3-C)

P1-RLO = (—=P1-D & P1-E || P1-F & P1-RLO & —P1-LCE)
P3-RLO = (—P3-D & P3-E || P3-F & P3-RLO & —P3-LCE)

This is a generic property that all tracks should follow, therefore
the outer wrapper of the property would be like “ALL track (...)",
which is a syntax sugar. Besides, taking future debugging into con-
sideration, it is suggested to split the property into sub-properties
to avoid unrevealed failure during calculation because of the short
circuit characteristics (yet this is not a must). Therefore, the formal
properties would be:

Example 4.3 (Generic Properties in RIS-FL).

e SubRequirement-1 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track) — LogicallyClearElapsed(track));
e SubRequirement-2 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track) — RouteReleased(track));
e SubRequirement-3 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track) — — RouteLockedOccupied(track));
Then the formula would be instantiated according to the domain
interpretation. As shown in topology (Fig. 5), the whole set of tracks
in this system is {T1, T2, T3, T4}. We can easily conclude from the

1918

. Model Checking
CAR ; { safe
SN
IC3/PDR ! (@ counter Example
BMC
ImMC
o) Signal
|-® o P2 ps F——— Track
1 L : 2 ! Switch
} 1 l
I T
pa LE] P3 LB

Figure 5: An Example of Station Layout

Table 1: belongToTrack

Table 2: State function mapping

Function name

‘ Literal name

Released(track)

LogicallyClearElapsed(track)

RouteReleased(track)

${track}-(R)
${track}-(LCE)
${track}-(RR)

RouteLockedOccupied(track) | ${track}-(RLO)

concrete properties that it always holds for a track that has no
switches belonging to it. According to the truth table (Table. 1),
only T1, T3 needs further consideration. “Released()” and “Logical-
lyClearElapsed()” are both state functions and should be checked
chronologically. Therefore, we would transform them using the

given mapping rule (Table. 2).
The result afterward shall be as follows:

Example 4.4 (Concrete Properties).

e SubRequirement-1-T1 := (- (P1-R) || P1-LCE)
e SubRequirement-1-T3 := (= (P3-R) || P3-LCE)
e SubRequirement-2-T1 := (- (P1-R) || P1-RR)
e SubRequirement-2-T3 := (= (P3-R) || P3-RR)
e SubRequirement-3-T1 := (-~ (P1-R) || P1-RLO)
e SubRequirement-3-T3 := (- (P3-R) || P3-RLO)

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Afterward, we would combine the concrete properties and the
input model together to generate an aiger model. To achieve this,
We translate all the ‘or’ and ‘imply’ statements into ‘and’ statements
together with ‘not’. For example, we would translate “=a||b” into
“=(a&—b)”. We also introduce intermediate variables to represent
the temporary variables, and latches are introduced to store values
for timed expressions. For example, “PRE a” implies that a should
be stored in a latch, and therefore can be later referred to. The
detailed translation will be shown in Section 4.4.

Once the aiger model is generated, we use a verification portfolio
to verify the model. Here we use IC3-ref [2] as the verifier, which
quickly determines that all properties are safe.

4.2 Framework Inputs

The inputs of a formal verification system can be generally divided
into two parts: the model of the system and the corresponding
specifications. In L1IGHTF3, however, due to the distinguishing char-
acteristics of interlocking systems, it has additional data part and
environment constraints part.

The system model describes the correlations between devices
and how the attribute of one device changes in the next cycle based
on all devices, which can be represented using LTLp formulas.
Meanwhile, the properties and constraints are expressed in FQLTL.
Although they may appear similar, properties describe the whole
interlocking system, while constraints serve as preconditions to
compress the state space and speed up verification. The track layout
and configuration data are maintained by the station and form the
later domain interpretation after a transformation process.

4.3 RIS-FL Model

LTL is widely used to express the behavioral constraints satisfied by
a system at each moment. However, in interlocking specifications,
the domain of entities referred to by the properties is limited. For
example, all the devices whose type is “route" have to satisfy a
particular property P;, LTL can only determine whether P; is satis-
fied, but not in the restricted domain “route R”. One step further,
practical properties need to specify in a finite-time manner. We also
need to add concrete time-range qualifiers to the binary temporal
operators for practical use.

FQLTL is a recently proposed logic [16], which can express rela-
tional and temporal properties so as to restrict the finite domain
of devices described in LTL specification. FQLTL is accessible to
describe a system with multiple, interrelated devices, the syntax
and semantics of which are defined as follows.

Definition 4.5 (Syntax of FQLTL formulas). A legal FQLTL for-
mula ¢ has the following syntax:

pu=t| (@) ~pldAdldVP|d—d]
P(tl,.‘.,tk) |ALLx-¢|SOMEX~¢|

PRE ¢ |X¢ | ¢ U[ml,mz] ¢ | ¢ S[m],mg] ¢;

In the above, ¢, t1, ..., ;. are the terms and P is the predicate sym-
bol as defined in First-Order Logic. ALL is the universal quantifier,
which is a syntax sugar of V, while SOME is the existential quan-
tifier, which is a syntax sugar of 3. Meanwhile, PRE, X, U, and S
are all temporal operators, where PRE is the Previous period oper-
ator and X means the neXt period; U is the Until operator, and S

1919

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

is the Since (past) operator. And the underlined time range is the
qualifier mentioned above. In particular, we use ¢1 R ¢ to denote
=(=$1U—¢2), i.e., where R is the dual operator of U; and we use
the usual abbreviations:

* Glmymy] $=L Rimymy) ¢
® Fimymy] ¢=T Upmym,) ¢

Definition 4.6 (Semantics of FQLTL formulas). Let £ be an infinite
trace, o be a signature and A be the corresponding o-structure such
that the universe of A, i.e., U4, is a finite set. Then the semantics of
FQLTL formulas are interpreted over the tuple (&, A, i) such that:

o (£ AN Etiff A[t] = true;

o (AN EP(ty, ..o ty) T (A[11],- ... Al t]) € Pa;
o (EAD) E(p)ff (£ A F

o (A) E-@iff (£ A, Q) ¥ P

o (EA) EPAYIF(EA D) E¢ and (A, D) EY;

o (E AN EGVYIf(£A D) E¢ or (£AI) EY;

o ((,A) FEd o Yiff (EA i) £ or (£, A i) EY;

o ({AI) EALLx - ¢ iffV a € Ug, (& Afxa) i) F 6;

o (§A,i) £ SOME x - ¢ iff Ja € Ug, (&, Apua) i) F ¢

e AE (tl = tz) iffﬂ'[tl]] = ﬂ'[tz]];

o ((,A,i) EPRE¢@iff i > 0and (£, A,i—1) E ¢;

o ((,A) EX¢iffi >0and(EAi+1) E ¢

o (§, A1) F ¢ Ulpmymy) ¥ iff mp < i < mpand thereisi <
J<mpst.((A,j) Fyandforalli <k < j, (A k) E¢P;

o (§,A,i) k¢ Sy, m, ¥ iff mp < i < mp and there is my <
j<ist (§,A,j) Eyandforall j <k < i, (& A k) E .

The tuple (¢, A, i) | ¢ means ¢ holds in (£, A) at step i. In
particular, we define (£, A) | ¢ iff (£, A, 0) = .

Since the universe Ug of A is restricted to be finite, the mo-
tivation comes up straightforwardly that the quantifiers can be
eliminated for further processing. We call FQLTL without quanti-
fiers LTLp. It differs from LTL in that it supports past-time temporal
operators. The syntax and semantics of LTLp are similar to those
of FQLTL, we just omit them here.

Definition 4.7 (FQLTL Instantiation). For an FQLTL formula
¢ with the signature o. Let A be its o-structure and Ug be the
universe in A. The instantiation of ¢ under A, denoted as I(¢), is
an LTL formula such that

I(P(t1, RN tk)) = Tiff (?”[t]]], RN ﬂl[tk]]) € Pqg; Other-
wise, [(P(t1,...,t)) = L;

I(¢1 A ¢2) = I($1) A I(¢2);

I(¢1V $2) = 1($1) V I(¢2);

I(¢1 = ¢2) = ~1(¢1) V I(¢2);

I(=¢) = -1(¢);

I(PRE ¢) = PRE I(¢);

I(X¢) = X I(¢);

(91 Spmy,my] 92) = 1(B1) Spmy,my 1(42)s

(91 Ulmymy) $2) = 1(91) Upmymy,) 1(42);

I(ALL x- ¢) = Agevn L(P[xa])s Where ¢| 4] is obtained
from ¢ by replacing x to a;

I(SOME x - ¢) = \/aEUy(I(¢[xv—>a])> where ¢[x»—>a] is ob-
tained the same as above.

Based on FQLTL, the formal language for railway interlocking
systems can be defined as follows:

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems

Definition 4.8 (RIS-FL). An interlocking system is a tuple (Model,
Props, Constraints) such that Props and Constraints are FQLTL
formulas, and Model is ({Device}, Topology, {Rule}) where

e Device := (Type, ID, {Attr})
e Topology := (Vertex = {Device}, Edge := {(Device, Device)})
e Rule is an LTLp-formula over 2{{Type}x{ID}x{Attr}}

To illustrate, we give a simple example here.

Example 4.9 (Describe properties using LTLp formulas). Let De-
vices be {Track1, Track2}, and the universal domain be:

o {Type} := {Track}
e {ID} :={1,2}
o {Attr} := {Released, Locked}

then a trivial informal property:
“If atrack is released, then it is not locked.”
is corresponding to the LTLp Rules:

e TracklReleased — — TracklLocked
e Track2Released — — Track2Locked

4.4 Model Transformation

And-Inverter Graphs (AIGs) is a compact form to formulate model
checking problems [6]. To construct an AIGER model, it is necessary
to identify the system’s temporal constraints and subsequently map
them into components in AIGER. This process involves two main
steps. The first step instantiates generic properties into concrete
ones, eliminating all the quantifiers present in the properties.

The property instantiation procedure primarily relies on a recur-
sive calculation, with assistance from the domain interpretation. It
takes as input the expression, keeps a present mapping table from
type to particular device, and generates a (S, TE) tuple, where S is
the status of calculation represented in a three-valued Bool (True,
False or Undetermined) and TE is the timed Boolean expression.
The rough idea is expressed in pattern-matching-style Pseudo code
in Algorithm 1, where we focus on the Boolean expression here for
simplicity, leaving the calculation of status implicit.

Depending on the expression type, the instantiation procedure
does correlative calculation. As to the logic expression, it just cal-
culates the status using three-valued Boolean logic. If the status is
either True or False, then the result expression TE should be empty.
Otherwise, TE will be concatenated together. Temporal operators
are reserved for later transformation while recursively calculating
sub-expressions. About quantifiers, it uses domain interpretation
to enumerate device instances and concatenates them together
likewise. Regarding function calls, operations are performed ac-
cording to detailed function types: either mapping to a literal with
the given rule, or returning a Boolean value representing whether
the relationship holds.

After instantiation, if the status S is true, that means this prop-
erty is bound to satisfy regardless of time and does not need fur-
ther checking. We would leave it out. Otherwise, if the status
S is False, that means it would never be satisfiable, though this
should hardly happen in real cases, we would just put a placeholder
“ReservedLiteral & — ReservedLiteral” in it for robustness. Mean-
while, if the status is Undetermined, the corresponding concrete
properties are then generated.

1920

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Algorithm 1: Property Instantiation Algorithm

Input: A FQLTL property p, Main Device Type ¢, Device
Domain D
Output: A set of corresponding LTLp properties L
L:={}
foreach dev; in D do
item « {t = dev;}
l; « INST (p, item)
L—LUI;
function INST(p, item)
match p with
| All typ p1 =
{dev} « getdevice(typ, D)
return A\(INST(p1,item U typ = dev;))
| Some typ p1 =
{dev} « getdevice(typ, D)
return \/(INST(p1,item U typ = dev;))
[p1 A p2=
return INST (p1, item) A INST (po, item)
[p1 VvV p2=
return INST(p1,item) V INST (pz, item)
| =p1 = return = INST(p1, item)
| PRE p = return PRE Inst(p)
| X p = return X Inst(p)
| P1Upt1) P2 =
return INST (p1) U[h,tz] INST(pz)
| p1 S[tl,tg] p2 =
return INST(p1) Sis,,1,] INST (p2)
| default =
(* use domain interpretation to calculate)

Algorithm 2: Generate Aiger

Input: Model m, Property set P, Constraint set C
Output: Aiger Model A
A—{}
foreach r; in m.rules do
| A< A U trans(r;)
foreach p; in P do
A« A U trans(INST(p;))
Mark(p;, ‘Property’, A)
foreach ¢; in C do
A«— A U trans(INST(c;))
Mark(c;, ‘Constraint’, A)

To translate propositional logic to a combination of basic compo-
nents is trivial (Algorithm 2, 3). The basic idea is to use appropriate
latches whenever a time operator is used. For example, a PRE’ oper-
ator means to fetch the prior cycle’s value and can be represented as
a latch in aiger. Similar operations can be done with this approach.
Combining the model expressions and concrete properties, the aiger
model is finally produced. Notably, in Algorithm 3, function ‘Var’
maps an LTLp formula to an integer; ‘And (c, a, b)’ creates an and-
gate whose output is ¢ and inputs are a, b; ‘Latch (a, b)’ creates a
latch whose current and next values are a, b respectively.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

4.5 Verification Portfolio

Over the past few decades, model checking techniques have under-
gone significant evolution, enabling the solution of increasingly
complex problems. Although BMC has been the go-to technique
for hardware model checking, it has certain drawbacks, such as
the inability to prove the absence of errors without special han-
dling [8]. Recently, new techniques such as CAR, IMC, IC3/PDR
have emerged, and while they may produce a larger number of SAT
queries than BMC, most of them can be handled well by modern
SAT solvers. Each of these techniques has its own strengths and
weaknesses, and there is no clear winner. For example, IC3 can
solve instances that BMC cannot and vice-versa [18]; The same is
true among AVY [49], QUIP [33] and IC3. BMC outperforms IMC
on unsafe instances [7]; CAR is able to solve some instances that
are not solved by any other techniques, but not all [42].

Therefore, a verifier portfolio may be preferable to relying on
a specific verifier. However, few prior works have employed the
latest model-checking techniques for interlocking systems. In our
framework, LightF3, we can easily add any latest aiger-based verifier
without additional cost. This allows us to effectively solve practical
interlocking problems using the latest model-checking techniques
and provide rich feedback for future design.

Algorithm 3: The Trans Procedure

Input: LTLp formula ¢
Output: Aiger Model A
A « match ¢ with
| atom = 0
| ~¢1 =
And(Var(=¢1),=Var(¢1), True) U trans(fr)
| $1V ¢2 = And(Var(=(¢1 V ¢2)), Var(=¢1), Var(=¢2))
U trans(¢1) U trans(dz)
| $1 A g2 =
And(Var($1 A ¢2), Var($1), Var(¢2))
U trans(¢1) U trans(dz)
| 1 — g2 =
trans(—d1 V @2)
g1 o ¢2 =
trans((¢1 — ¢2) A (g2 — ¢1))
|PRE ¢1 =
Latch(Var(PRE ¢1),Var(¢1)) U trans(¢r)
| X ¢1 =
Latch(Var(¢1),Var(X ¢1)) U trans(¢r)
| $1 U[tl,tg] P2 =
match ty with
| 1 = trans(¢z)
| _= trans(X" ($2 V ($1 A X(P1 Uptya1,,] 92))))
| §1 S(1,,0,1 P2 =
match t; with
| t2 = trans(¢$z)
| _ = trans(PRE®(¢2 V (¢1 A PRE($15[4, 1,-1192))))

5 EVALUATION

With a friendly interface, the bar of writing formal properties is
lowered to a great extent. However, this may possibly incur an
increase in transformation costs. Besides, the extensible design

1921

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

Table 3: Station Size

Station ‘ Track | Route | Switch ‘ Signal

Alice 14 8 3 12
Bob 56 70 14 37
Charlie 171 503 87 152
David 151 720 79 145
Eve 151 499 74 140

allows any state-of-the-art verifiers to give it a try on interlocking
problems. For our evaluation, we are interested in testing whether
the model transformation is an efficiency bottleneck that causes
failure, and how different verifiers behave in interlocking contexts.

5.1 Evaluation Setup

We run experiment on a cluster of servers, which is equipped with
an Intel Xeon Gold 6132 14-core processor at 2.6GHz and 96GB
RAM. And the version of the operating system is Red Hat 4.8.5-16.

We conducted the experiment to evaluate the performance of
LightF3 using five sample stations of varying sizes (Table. 3). For
testing purposes, we utilized a set of 206 abstract properties. To
ensure confidentiality, we renamed the stations based on the
requirements of our industrial partner. Except for Station Eve
which has 262 unsafe concrete properties among 8002 ones, all the
other concrete properties are safe. This corresponds to the industrial
fact that most properties to be verified do hold. The experiment is
conducted serially, though some verifiers support parallel like IC3.

5.2 Evaluation Results

RQ1: What is the cost for model transformation in LiGHTF3?

We set three checkpoints in the life cycle, by which we record
the time consumption during each period. Property instantiation
and aiger generation together make up the model transformation
procedure, as is shown in Fig. 6.

Trivially, the complexity of instantiation is utmost O([] n;),
i=1

where Q is the count of quantifiers and n; is the sum of devices

of target type. With caching strategy and limited max parameter

n, i
count, the complexity can be lower to O(ZF(ﬁ ni j)), where n,p
j=1 i=1
means the number of relative functions, fp ; the parameter of the
Jj-thfunction and n; j means the number of the i-th parameter in the
Jj-th function. The short circuit characteristics in logic computation
further reduce the amount of calculation. As to aiger generation,
the complexity is linear with respect to amount of literals, which
grows at an approximate linear velocity empirically. In summary,
the model transformation procedure requires a moderate amount
of time and exhibits slow growth as the model scales up.

In verification, however, model checking techniques require
traversing all possible routes and states which is at least polynomial
in complexity, and even degrade into exponential as the problem
gets more complex. Though some implementations like Backward
CAR do behave well, the time cost in most implementations grows
at a high rate with respect to amount of literals.

From the result shown in Fig. 6, we can see that time consump-
tion of model transformation grows with scale at a low speed, while

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

T T

Instantiation =
AigerGen

Verification mmmm

T T
{Backward CAR
Forward CAR

120000

IC3-ref mmmm

1IMC-ic3
IIMC-bme
Transform

100000
80000

60000

Percentage

40000

Time Consumption (s)

20000

|

0 L

—

9000

T T
Backward CAR mmmm
Forward CAR
IC3-ref =
1IMC-ic3 mmmm
IIMC-bme
Silver Bullet

|

8000

7000
6000 -
5000 -
4000

3000

The number of solved cases

2000
1000

Alice Bob Charlie David Eve Alice Bob

Station Names

Figure 6: Sum of Time Consumption Figure 7: Time Consumption Proportion

with IC3-ref

verification time grows rapidly. Besides, we take IC3-ref as an exam-
ple, see Fig. 7. The proportion of instantiation and aiger generation
are both small as to large scale stations. All these corresponds with
our perception. We can conclude that either the problem is trivial
to verify, under such circumstance there’s no threat to fail; or the
transformation takes a small percentage of time. We summarize
that model transformation is not likely to become an efficiency
bottleneck, let alone directly causing solving failure.

RQ2: How do different verifiers behave in the context of
interlocking?

Generally speaking, Backward CAR and IC3-ref perform best
in interlocking verification. They solve the most cases (Fig. 8) and
consumed moderate time (Fig. 6). Forward CAR comes after the
prior two, while the others can only solve a few cases as to large
scale problems, and are somehow not so suitable for practical inter-
locking verification.

For correctness proof, BMC has an inherent drawback, not sur-
prising IIMC-bmc not doing well. Forward CAR is designed to be
better in verifying safety [39], while the result is on the contrary. We
then further investigate in abstract property level within station Eve.
In fact, Forward CAR does better on particular properties (Fig. 10(a)).
But it is too slow or even fails on some ones, and therefore slows
down the verification of whole property. Adding a supplement,
Forward CAR fails to find all the counterexamples, directly leading
to the failure. That is possibly the reason why Backward CAR does
better than Forward CAR. We also contact maintainers for help, but
so far no convincing probable cause has been found.

Backward CAR performs better than IC3-ref in most models:
not only in the result obtained but also in speed. However, there
do exist some exceptions, like Station Charlie, where IC3-ref can
solve more cases than Backward CAR. More specifically, concretize
to abstract property level, it can be seen in Fig. 10(b) that they
each has its own advantage, while Backward CAR performs better
on the whole. The result is in line with our expectations that no
model-checking techniques can outperform others in all aspects,
proving the effectiveness of the extensible design in L1GHTF3.

Furthermore, we select all unsafe instances to shed light on
bug finding. IIMC-ic3 and Forward CAR has far lower efficiency.
Among the other three implementations left, BMC has an inherent
talent to find counterexamples, while CAR and IC3 each can find
bugs that BMC cannot. We compare them pairwise and draw the
scatter diagrams (Fig. 9). As is shown, Backward CAR can find most
counterexamples faster than IIMC-bmc (Fig. 9(a)), while IIMC-bmc

Charlie

Station Nat

1922

David Eve Bob Charlie

Station Names

Alice David Eve

mes

Figure 8: Sum of Solved Cases

does better on most cases than IC3-ref (Fig. 9(b)), which cannot
even finish all in time. Backward CAR outperforms IC3-ref in all the
counter cases (Fig. 9(c)). To summarize, Backward CAR performs
best in most unsafe instances, but not all.

RQ3: How effective is it for verifiers to complement each
other?

As is illustrated in RQ2, Backward CAR and IC3-ref have their
advantages in overall performance, while IMC-bmc is sometimes
the best in finding counter examples. We try to use IC3-ref and
IIMC-bmc to complement Backward CAR. We first union all the
cases solved by each verifier and get the ceiling, with which we try
omitting and backtracking to eliminate those of few contribution.
Once there is nothing to omit, we get the minimal useful portfolio.

In Fig. 11, with the same solving order and time limit, IC3-ref
and IIMC-bmc moderately enhance the problem-solving capability,
albeit to a limited extent. Besides, adding other verifiers to the port-
folio cannot take one step further. Distinguished from the fact that
IC3/PDR and Forward CAR perform far better than Backward CAR
on proving correctness in hardware verification [39, 42], Backward
CAR performs well in verifying interlocking systems. It utilizes a
different searching strategy compared to IC3/PDR and Forward
CAR within the verification process. The hypothesis is the model
structure of an interlocking system may be verified more efficiently
by Backward CAR. This observation helps reveal the characteristic
of interlocking verification and is worth further investigation.

6 EXPERIENCE & LESSON

We initiated the design and development of the LightF3 framework
in 2020, and over the course of the past three years, we have gained
valuable experience and lessons, which we share in this section.
One of the most significant lessons we have learned is the im-
portance of domain knowledge over specific implementation. We
dedicated a substantial amount of time to consulting technicians
and experts in the field to acquire deep domain knowledge of in-
terlocking systems. This knowledge proved crucial in designing
and developing the property instantiation procedure. When instan-
tiating each function within a FQLTL property, we relied on the
guidance of technicians to understand the meaning and specific
requirements of the function. For example, when instantiating the
function BelongToTrack(switch, track), we consult technicians to
understand its meaning (which is typically checking whether a
specific switch belongs to a particular track) and how we determine
its value for a given switch and track. Technicians may guide us to

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

1000 1000

1000

00

N,
P

A
e per

¥
*y

s ,w):.“.z.]

IMG BMC (5)

WINE

1IMG BMC (5)

Icaret (s)

*

1 100 1000 o 1

10
Backward CAR (5)

(a) B-CAR vs IMC-bmc

10
ICaref (5)

(b) IC3-ref vs IMC-bmce

100 1000 1 100 1000

10
Backward CAR (5)

(c) B-CAR vs IC3-ref

Figure 9: Pairwise Comparison in Unsafe Concrete Property Level (within Station Eve)

1000

1000

Icaref (5)

Forward GAR (5]
oy

Backwarg CAR ——

IMC-bmc:
Backward CAR+IC3-rel
ackward CARHIMC bme
Backward CAR+C3-ref IC-bmc
Backward CARForward CAR 1G3-ref+ INC-bmc
Backward CAR=Forviard CAR4IC3 ol IMC bme+IMC.ic3 — — -

100
Backward AR (5)

(a) B-CAR vs F-CAR

1000 o 1

Backward AR (5]

100 1000 20000 40000 60000 80000

GPU Time (s)

100000

(b) B-CAR vs IC3-ref

Figure 11: Sum of Cases Solved by Verfier
Portfolios

Figure 10: Pairwise Comparison in Abstract Property Level (within Station Eve)

refer to specific Excel sheets in the configuration data and verify
whether the switch is located in a specific cell. This information
then guides our code implementation.

Another important experience is that the best model-checking
algorithm extensively benchmarked in the hardware-design do-
main may not be the most suitable one for interlocking system
verification. Although IC3/PDR is considered the most advanced
model checking algorithm in terms of overall performance, and
its performance on the HWMCC benchmark is much better than
Backward CAR, Backward CAR surprisingly outperforms IC3/PDR
and others on the interlocking system verification benchmark. This
could be because the interlocking system verification benchmark
is unique, or because Backward CAR utilizes a different searching
strategy compared to IC3/PDR. Therefore, it is always necessary
and beneficial to try using a model checking portfolio, instead of
only relying on the best algorithm by default.

7 DISCUSSION & CONCLUSION

Considerable efforts have been dedicated to modeling and verifying
interlocking systems. However, there is a lack of formal descrip-
tions for these systems, resulting in different perspectives and a
lack of common understanding. In this paper, we address this gap
by providing a formal description of the interlocking system and
proposing a specific modeling and verification language, RIS-FL,
based on the FQLTL logic.

Previous works have integrated various model-checking algo-
rithms into their frameworks. However, these integrations often

1923

form closed chains that are challenging to extend. While model
checking algorithms have rapidly advanced in recent decades, pre-
vious works have struggled to keep up with the state-of-the-art ver-
ification techniques. To address this issue, our framework, LightF3,
is designed to be lightweight and extensible.

To conclude, we present LIGHTF3, a lightweight and fully-process
formal framework to model and verify Railway interlocking sys-
tems. A formal language RIS-FL based on FQLTL is provided for
modeling the system and specifications. The RIS-FL models are au-
tomatically transformed into aiger models, enabling the invocation
of third-party checkers to perform the verification task. To assess
the effectiveness and efficiency of LiGHTF3, we conduct evaluations
on five real station instances obtained from our industrial partner.
We further investigate and analyze the statistics of the verification
results using various model-checking techniques. Overall, LiGHTF3
offers a powerful and practical solution for modeling and verify-
ing railway interlocking systems, bridging the gap between formal
methods and railway domain expertise.

DATA AVAILABILITY
The data and artifacts that support this paper are available at [1].

ACKNOWLEDGEMENT

We thank anonymous reviewers for their helpful comments. This
work is supported by the National Natural Science Foundation of
China (NO. U21B2015 and 62372178), and the Shanghai Collabora-
tive Innovation Center of Trusted Industry Internet Software.

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems

REFERENCES

(1]
(3]
(4]

[10]

(11

[12]

(13

[14

[15]

[16]

[17]

[18

[19]

[20

[21]

[22]

[23

[n.d.]. Data Availability. https://doi.org/doi.org/10.1145/3580405

[n.d.]. IC3Ref. https://github.com/arbrad/IC3ref.

Bowen Alpern and Fred B Schneider. 1987. Recognizing safety and liveness.
Distributed computing 2, 3 (1987), 117-126. https://doi.org/10.1007/bf01782772
Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. 1999. Météor:
A Successful Application of B in a Large Project. In FM’99 — Formal Methods, Jean-
nette M. Wing, Jim Woodcock, and Jim Davies (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 369-387. https://doi.org/10.1007/3-540-48119-2_22

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media. https://doi.org/10.1007/978-3-662-07964-5

Armin Biere. 2007. The AIGER and-inverter graph (AIG) format version 20071012.
(2007). https://doi.org/10.35011/fmvtr.2007-1

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yun-
shan Zhu. 1999. Symbolic model checking using SAT procedures instead of
BDDs. In Proceedings of the 36th annual ACM/IEEE Design Automation Conference.
317-320. https://doi.org/10.1109/DAC.1999.781333

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. [n. d.]. Bounded model checking. Handbook of satisfiability 185, 99
([n.d.]), 457-481. https://doi.org/10.3233/978-1-58603-929-5-457

Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini, Matteo Tempestini,
and Leonardo Cipriani. 2014. Validation of Railway Interlocking Systems by
Formal Verification, A Case Study. In Software Engineering and Formal Methods,
Steve Counsell and Manuel Nufiez (Eds.). Springer International Publishing,
Cham, 237-252. https://doi.org/10.1007/978-3-319-05032-4_18

Arne Borilv. 2018. Interlocking Design Automation Using Prover Trident. In
Formal Methods, Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik de Vink (Eds.).
Springer International Publishing, Cham, 653-656. https://doi.org/10.1007/978-
3-319-95582-7_39

Aaron R Bradley. 2011. SAT-based model checking without unrolling. In Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 70-87. https://doi.org/10.1007/978-3-642-18275-4_7

Simon Busard, Quentin Cappart, Christophe Limbrée, Charles Pecheur, and
Pierre Schaus. 2015. Verification of railway interlocking systems. In ESSS. https:
//doi.org/10.48550/arXiv.1506.03554

Quentin Cappart, Christophe Limbrée, Pierre Schaus, and Axel Legay. 2015. Veri-
fication by discrete simulation of interlocking systems. In 29th Annual European
Simulation and Modelling Conference. 402-409. https://doi.org/10.1109/HASE.
2017.10

Quentin et al. Cappart. 2017. Verification of Interlocking Systems Using Statistical
Model Checking. In 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE). 61-68. https://doi.org/10.1109/HASE.2017.10
Basri Tugcan Celebi and Ozgur Turay Kaymakei. 2016. Verifying the accuracy of
interlocking tables for railway signalling systems using abstract state machines.
Journal of Modern Transportation 24 (2016), 277-283. https://doi.org/10.1007/
540534-016-0119-1

Yu Chen, Xiaoyu Zhang, and Jianwen Li. 2022. Finite Quantified Linear Temporal
Logic and Its Satisfiability Checking. In Artificial Intelligence Logic and Applica-
tions: The 2nd International Conference, AILA 2022, Shanghai, China, August 26-28,
2022, Proceedings. Springer, 3-18. https://doi.org/10.1007/978-981-19-7510-3_1
A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. 2000. NUSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer 2,
4 (2000), 410-425. https://doi.org/10.1007/s100090050046

Alessandro Cimatti and Alberto Griggio. 2012. Software model checking via IC3.
In International Conference on Computer Aided Verification. Springer, 277-293.
https://doi.org/10.1007/978-3-642-31424-7_23

Edmund M Clarke. 1997. Model checking. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Springer, 54-56.
https://doi.org/10.1007/BFb0058022

Dalay Israel de Almeida Pereira, David Deharbe, Matthieu Perin, and Philippe
Bon. 2019. B-Specification of Relay-Based Railway Interlocking Systems Based on
the Propositional Logic of the System State Evolution. In Reliability, Safety, and
Security of Railway Systems. Modelling, Analysis, Verification, and Certification,
Simon Collart-Dutilleul, Thierry Lecomte, and Alexander Romanovsky (Eds.).
Springer International Publishing, Cham, 242-258. https://doi.org/10.1007/978-
3-030-18744-6_16

Niklas Eén, Alan Mishchenko, and Robert Brayton. 2011. Efficient implementation
of property directed reachability. In 2011 Formal Methods in Computer-Aided
Design (FMCAD). IEEE, 125-134. http://dlL.acm.org/citation.cfm?id=2157675

BS EN. 2011. 50128 (2011). Railway Applications-Communication, Signalling
and processing systems: Software for railway control and protection systems.
International Electrotechnical Commission (2011).

Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessandro Fantechi.
2011. Model checking interlocking control tables. In FORMS/FORMAT 2010.
Springer, 107-115. https://doi.org/10.1007/978-3-642-14261-1_11

1924

[24]

[25

&
&

[27

(28]

[29]

[30

[31

[32

[33

&
=

(35]

(36]

[37

[38

(39]

[40]

[41]

[42]

[43

[44]

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Alessio Ferrari, Maurice H. ter Beek, Franco Mazzanti, Davide Basile, Alessandro
Fantechi, Stefania Gnesi, Andrea Piattino, and Daniele Trentini. 2019. Survey
on Formal Methods and Tools in Railways: The ASTRail Approach. In Reli-
ability, Safety, and Security of Railway Systems. Modelling, Analysis, Verifica-
tion, and Certification, Simon Collart-Dutilleul, Thierry Lecomte, and Alexan-
der Romanovsky (Eds.). Springer International Publishing, Cham, 226-241.
https://doi.org/10.1007/978-3-030-18744-6_15

Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. AAAI Press (2013). https://dl.acm.org/doi/10.5555/
2540128.2540252

Giuseppe De Giacomo and Moshe Y. Vardi. 2015. Synthesis for LTL and LDL
on finite traces. AAAI Press (2015). https://dl.acm.org/doi/abs/10.5555/2832415.
2832466

Tim Gonschorek, Ludwig Bedau, and Frank Ortmeier. 2018. Bringing formal
methods on the rail. Safety and Reliability — Safe Societies in a Changing World
(2018). https://doi.org/10.1201/9781351174664-92

Anne E. Haxthausen, Jan Peleska, and Ralf Pinger. 2014. Applied Bounded
Model Checking for Interlocking System Designs. In Software Engineering and
Formal Methods, Steve Counsell and Manuel Nuiiez (Eds.). Springer International
Publishing, Cham, 205-220. https://doi.org/10.1007/978-3-319-05032-4_16

G. J. Holzmann. 1997. The Model Checker - SPIN. IEEE Transactions on Software
Engineering 23 (1997), 279-295. https://doi.org/10.1109/32.588521

Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. 2013. The SafeCap
Platform for Modelling Railway Safety and Capacity. In Computer Safety, Re-
liability, and Security, Friedemann Bitsch, Jérémie Guiochet, and Mohamed
Kaaniche (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 130-137. https:
//doi.org/doi.org/10.1007/978-3-642-40793-2_12

Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky. 2018.
Formal Verification of Signalling Programs with SafeCap. In Computer Safety,
Reliability, and Security, Barbara Gallina, Amund Skavhaug, and Friedemann
Bitsch (Eds.). Springer International Publishing, Cham, 91-106. https://doi.org/
10.1007/978-3-319-99130-6_7

Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky. 2022.
Practical Verification of Railway Signalling Programs. IEEE Transactions on
Dependable and Secure Computing (2022), 1-1. https://doi.org/10.1109/TDSC.
2022.3141555

Alexander Ivrii and Arie Gurfinkel. 2015. Pushing to the top. In 2015 Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 65-72. https://doi.org/10.
1109/FMCAD.2015.7542254

Phillip James, Andy Lawrence, Faron Moller, Markus Roggenbach, Monika Seisen-
berger, Anton Setzer, Karim Kanso, and Simon Chadwick. 2014. Verification of
Solid State Interlocking Programs. In Software Engineering and Formal Meth-
ods, Steve Counsell and Manuel Nuiiez (Eds.). Springer International Publishing,
Cham, 253-268. https://doi.org/10.1007/978-3-319-05032-4_19

Juan Bicarregui Jim Woodcock, Peter Gorm Larsen and John S. Fitzgerald. 2009.
Formal methods: Practice and experience. ACM Comput. Surv. 41 (2009). https:
//doi.org/10.1145/1592434.1592436

Andrew Lawrence, Monika Seisenberger, Andrew Lawrence, and Monika Seisen-
berger. 2010. Verification of railway interlockings in scade. In AVOCS’10,
Proceedings of the 10th International Workshop on Automated Verification of
Critical Systems and the Rodin User and Develop Workshop. Springer, 112-114.
https://www.academia.edu/download/30935387/FinalVersion.pdf

Marie Le Bliguet and Andreas Andersen Kjeer. 2008. Modelling interlocking
systems for railway stations. Master’s thesis. Technical University of Denmark,
DTU, DK-2800 Kgs. Lyngby, Denmark.

Michael Leuschel and Michael Butler. 2003. ProB: A model checker for B. In
International symposium of formal methods europe. Springer, 855-874.

Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and Moshe Y
Vardi. 2018. Simplecar: An efficient bug-finding tool based on approximate
reachability. In International Conference on Computer Aided Verification. Springer,
37-44. https://doi.org/10.1007/978-3-319-96142-2_5

Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He. 2013.
LTL Satisfiability Checking Revisited. In 2013 20th International Symposium on
Temporal Representation and Reasoning (TIME). https://doi.org/10.1109/TIME.
2013.19

J.Li, S. Zhu, G. Pu, and M. Vardi. 2015. SAT-based Explicit LTL Reasoning. Haifa
Verification Conference (2015). https://doi.org/10.1007/978-3-319-26287-1_13
Jianwen Li, Shufang Zhu, Yueling Zhang, Geguang Pu, and Moshe Y Vardi.
2017. Safety model checking with complementary approximations. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
95-100. https://doi.org/10.1109/ICCAD.2017.8203765

Bidhan Malakar and B.K. Roy. 2014. Railway fail-safe signalization and inter-
locking design based on automation Petri Net. In International Conference on
Information Communication and Embedded Systems (ICICES2014). 1-4. https:
//doi.org/10.1109/ICICES.2014.7034154

Ma Maofei and Zhang Yong. 2020. Modeling and Formal Verification of Interlock-
ing System Based on UML and HCPN. In 2020 World Conference on Computing
and Communication Technologies (WCCCT). 47-52. https://doi.org/10.1109/

https://doi.org/doi.org/10.1145/3580405
https://github.com/arbrad/IC3ref
https://doi.org/10.1007/bf01782772
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1109/DAC.1999.781333
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-319-05032-4_18
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.48550/arXiv.1506.03554
https://doi.org/10.48550/arXiv.1506.03554
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/978-981-19-7510-3_1
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-030-18744-6_16
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-030-18744-6_15
https://dl.acm.org/doi/10.5555/2540128.2540252
https://dl.acm.org/doi/10.5555/2540128.2540252
https://dl.acm.org/doi/abs/10.5555/2832415.2832466
https://dl.acm.org/doi/abs/10.5555/2832415.2832466
https://doi.org/10.1201/9781351174664-92
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1109/32.588521
https://doi.org/doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1109/TDSC.2022.3141555
https://doi.org/10.1109/TDSC.2022.3141555
https://doi.org/10.1109/FMCAD.2015.7542254
https://doi.org/10.1109/FMCAD.2015.7542254
https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://www.academia.edu/download/30935387/FinalVersion.pdf
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1007/978-3-319-26287-1_13
https://doi.org/10.1109/ICCAD.2017.8203765
https://doi.org/10.1109/ICICES.2014.7034154
https://doi.org/10.1109/ICICES.2014.7034154
https://doi.org/10.1109/WCCCT49810.2020.9170006
https://doi.org/10.1109/WCCCT49810.2020.9170006

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

WCCCT49810.2020.9170006
Kenneth L McMillan. 2003. Interpolation and SAT-based model checking. In

International Conference on Computer Aided Verification. Springer, 1-13. https:

//doi.org/10.1007/978-3-540-45069-6_1
T. Michaud and M. Colange. 2018. Reactive synthesis from LTL specification
with Spot. In In Proceedings of the 7th Workshop on Synthesis.

Andrew Nash, Daniel Huerlimann, Jorg Schiitte, and Vasco Paul Krauss. 2004.

Railml¥ a standard data interface for railroad applications. WIT Transactions on
The Built Environment 74 (2004). https://doi.org/10.2495/CR040241
Kristin Y. Rozier and Moshe Y. Vardi. 2007. LTL Satisfiability Checking. In

International SPIN Workshop on Model Checking of Software. https://doi.org/10.

Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

1007/978-3-540-73370-6_11

Yakir Vizel and Arie Gurfinkel. 2014. Interpolating property directed reachability.
In International Conference on Computer Aided Verification. Springer, 260-276.
https://doi.org/10.1007/978-3-319-08867-9_17

Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. 2017. Formal modelling
and verification of interlocking systems featuring sequential release. Science of
Computer Programming 133 (2017), 91-115. https://doi.org/10.1016/j.scico.2016.
05.010 Formal Techniques for Safety-Critical Systems (FTSCS 2014).

W. Zhu. 2021. Big Data on Linear Temporal Logic Formulas. In 2021 IEEE 4th
Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC). https://doi.org/10.1109/IMCEC51613.2021.9482368

https://doi.org/10.1109/WCCCT49810.2020.9170006
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.2495/CR040241
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-319-08867-9_17
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1109/IMCEC51613.2021.9482368

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 First-Order Logic
	3.2 Linear Temporal Logic
	3.3 Model Checking
	3.4 Verification of Interlocking System

	4 LightF3 Framework
	4.1 Illustrating Example
	4.2 Framework Inputs
	4.3 RIS-FL Model
	4.4 Model Transformation
	4.5 Verification Portfolio

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Experience & Lesson
	7 Discussion & Conclusion
	References

