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ABSTRACT

Interlocking has long played a crucial role in railway systems. Its

functional correctness, particularly concerning safety, forms the

foundation of the entire signaling system. To date, numerous e�orts

have been made to formally model and verify interlocking systems.

However, two main problems persist in most prior work: (1) The

formal description of the interlocking system heavily depends on

reusing existing models, which often results in overgeneralization

and failing to fully utilize the intrinsic characteristics of interlocking

systems. (2) The veri�cation techniques of current approaches may

quickly become outdated, and there is no adaptable method to

integrate state-of-the-art veri�cation algorithms or tools.

To address the above issues, we present LightF3, a lightweight

and fully-process formal framework for modeling and verifying

railway interlocking systems. LightF3 provides RIS-FL, a formal

language based on FQLTL (a variant of LTL) to model the sys-

tem and its speci�cations. LightF3 transforms the RIS-FL model

automatically to the aiger model, which is the mainstream input

of state-of-the-art model checkers, and then invokes the most ad-

vanced checkers to complete the veri�cation task. We evaluated

LightF3 by testing �ve real station instances from our industrial

partner, demonstrating its e�ectiveness as a new framework. Addi-

tionally, we analyzed the statistics of the veri�cation results from

di�erent model-checking techniques, providing useful conclusions

for both the railway interlocking and formal methods communities.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.
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1 INTRODUCTION

An interlocking system is a control system responsible for guiding

the trains safely through the railway network in accordance with

tra�c regulations and disciplines. By continuously maintaining the

state of devices , the interlocking system determines whether it is

safe to perform certain operations, such as allowing the train to

enter a speci�c track. Additionally, by controlling active elements,

the interlocking system serves as a vital interface between trains

and other railway components (as shown in Fig. 1). Therefore, the

functional correctness of the interlocking system, especially safety

correctness, is crucial to the entire signal system and must meet a

high safety integrity level (SIL4) [22].

Despite the importance of ensuring safety, many railway com-

panies still rely on manual testing and simulation due to a lack of

e�cient and cost-e�ective mechanisms for verifying safety proper-

ties. Though formal methods [35] have shown promise, the complex

professional background and universal con�dentiality of the rail-

way industry make it di�cult to apply these techniques. As a result,

most research [13, 50] focuses on speci�c station cases with mod-

erate scale or simple properties.

Moreover, prior works on formally verifying interlocking sys-

tems have mainly adopted �xed veri�ers and attempted to reuse

existing models like SMV [12] or transform into them [17], typi-

cally by feeding them into third-party IDEs [24]. This approach

is di�cult to extend and eliminates the possibility of reserving

instance-oriented quanti�ers along with past operators, which are

both crucial components for complex practical properties not sup-

ported in existing models. Safety properties in interlocking sys-

tems, originating from a common discipline, distinguish themselves

from those in other domains in that they are highly homogeneous

both inter-station and intra-station. Manually writing repetitive

and error-prone low-level properties falls far behind writing a few

generic properties and instantiating them according to detailed data.

Furthermore, without past operators, time-sensitive properties may

be beyond expression. Regarding veri�cation techniques, existing

veri�ers generally employ bounded model checking [7] as the core

technique. While this approach is e�cient in �nding shallow bugs,
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state-of-the-art veri�ers like CAR [42] and IC3/PDR [11, 18, 21]

have demonstrated superior performance under di�erent circum-

stances. However, there is currently no convenient way to plug

them in or recon�gure them according to the veri�cation result.

In our opinion, the model of the interlocking system can be rep-

resented as an acyclic graph constructed based on the topology of

the track layout, along with a set of rules that describe the rela-

tionships among the devices. The devices, each having unique IDs

and various attributes, are represented as vertices, while the rules

are represented as edges connecting the vertices. For example, ‘A

switch B1 is in the track C1’ can be expressed as the ‘�4;>=6)>)A02:’

attribute of B1 being ‘C1’, and the corresponding rule ‘B1 should be

in track C1’ will then be speci�ed as ‘B1 .�4;>=6)>)A02: == C1’. On

this basis, the interlocking system can be seen as a graph with rich

information stored in its vertices. Alternatively, one can regard it

as a circuit-like system with a moderate scale. The veri�cation of

such system is a prevalent subject in hardware model checking.

We propose a framework called LightF3 for automated veri�-

cation of railway interlocking systems (Fig. 2). The term "Light"

indicates that it does not involve translation into a more complex

and general model; it also reduces the di�culty of writing formal

properties, making it easy for production personnel to use. Addi-

tionally, plug-and-play is supported for any aiger-based work-of-art

veri�er, making the cost of trying out the latest veri�er insigni�cant.

The triple "F" denotes "Fully-process Formal Framework," which is

its distinguishing feature. After writing the RIS-FL model, all subse-

quent procedures, including model transformation and veri�cation,

are formal. Based on the recently proposed Finite Quanti�er Linear

Temporal Logic(FQLTL) [16], we establish a formal language called

RIS-FL (short for Railway Interlocking System Formal Language)

to describe the model and write generic properties. Furthermore,

we provide users with a user-friendly interface in LightF3. These

generic properties do not specify particular devices and should be

written in accordance with tra�c regulations. As a result, they can

be shared among di�erent stations. Concrete properties are gener-

ated by instantiating them with detailed station-speci�c application

data for further veri�cation. With an extensible and re-con�gurable

veri�cation portfolio, di�erent properties can be e�ciently veri�ed

based on their aptitude.

We invited our industrial partners to try out LightF3, and with

a moderate amount of e�ort to learn how to write formal speci�ca-

tions and translate their station data, they were able to successfully

verify practical stations of various sizes. The largest station had

around sixty tracks and �fty switches with over 200 routes. Through

the use of LightF3, we helped them discover errors in their prior

natural language speci�cations and encouraged them to clarify rel-

evant concepts for their employees. Overall, our partnership with

them was a success, and they were pleased with the results.

Novelty.We provide the following contributions:

• A fully-process formal framework LightF3 that :

– proposes a formal language RIS-FL and allows writing

formal descriptions at a moderate cost.

– e�ectively transits to model checking problem.

– can carry any latest aiger-based [6] veri�ers to solve in-

terlocking system problems.

• Investigate the performance of various model-checking tech-

niques in interlocking contexts, conclusions of which bene�t

both industry and academia.

• Pose an example benchmark, which takes an interlocking

system as the background, to facilitate researchers who are

interested in practical interlocking problems.

2 RELATED WORK

There have been numerous e�orts to apply formal methods and

tools for ensuring the correctness of railway system designs [24, 35].

In the early days, general-purpose models such as UML [44], state

machines (or automata) [15], and Petri-Nets [43] were used, which

posed scalability issues. More successful applications emerge by

introducing the B method [4], SMV [12] as the modeling language,

with which powerful tools like ProB [38] and NuSMV [17] can

verify the obtained models in an e�cient way. Nevertheless, these

methods are still too generic to depict dedicated features of inter-

locking systems. For example, the B method cannot handle the

temporal information well while SMV lacks the (direct) support

for metric temporal information and �nite domains. For existing

domain-speci�c solutions, SafeCap [30–32] aims at modeling the

whole railway network, making it redundant to use on interlock-

ing systems. Also, railML [14] is a su�cient domain language to

describe an interlocking system, while it is semi-formal [47] and

proposes to utilize SAML [27], which is a formal language with

limited support for temporal reasoning, to formalize railML models.

Finally, the ladder logic [9, 34] is widely used in commercial tools

like Prover ILock [10] and SCADE [36], which may be the best op-

tion to model interlocking systems to date. However, Ladder logic
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may express limited temporal options by using the latch variables

only.

Towards the speci�cations of interlocking systems, previous

worksmainly use pure propositional logic [20] or variants of LTL [40,

48] to formalize from di�erent levels. However, most of them do not

consider extending LTL to describe generic properties suitable for

the same types of devices in the system, i.e., by introducing quan-

ti�ers over variables. Although [28] allows the quanti�ers, they

can be only a�liated to the bound variables for bounded model

checking. Also, the LTL versions supported in the SMV language

do not include quanti�cation.

Model checking [19] and theorem proving [5] are twomain veri�-

cation techniques for interlocking systems. While theorem-proving

B models have gained success in practice, a lot of arti�cial e�orts

are required to complete the proving. Meanwhile, model checking

can be achieved automatically once the model and properties are

prepared, which is more promising in the view of industrial appli-

cations. Indeed, series of works [28] rely on model checking tech-

niques like BMC [7], K-induction [50] and IC3/PDR [18] to verify

the interlocking system. However, most of them consider integrat-

ing such algorithms inside their methodology, running upon their

self-de�ned models. The cost can become heavy when considering

integrating new model-checking techniques instead of leveraging

state-of-the-art third-party model checkers, e.g., SimpleCAR [39],

IC3-ref [2], AVY [49] etc.

Our framework LightF3 is distinguished from others in the fol-

lowing aspects. (1) LightF3 uses the RIS-FL modeling language

which has FQLTL underlined and is more dedicated to modeling

railway systems rather than B, SMV, and SAML languages as well

as the Ladder Logic; (2) Once the RIS-FL model is created, the

left veri�cation process is fully automated, including the prop-

erty/constraint instantiation that is speci�c to interlocking systems;

(3) Finally, LightF3 is lightweight and �exible because it leverages

the Aiger [6] format as the input for model checking, which is

the mainstream nowadays and therefore is easy to import new

model-checking techniques as an aid to e�cient verifying.

3 PRELIMINARIES

3.1 First-Order Logic

The syntax of �rst-order logic is de�ned relative to a signature

f , which consists of a set of constant symbols, a set of function

symbols, and a set of predicate symbols. Each function and predicate

symbol has an 0A8C~ : > 0. Formally, a �rst-order logic formal q

has the form of

q ::= C | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∃G q | ∀G q

where the term C can be a variable, constant symbol, or k-ary func-

tion symbol 5 (C1, . . . , C: ). The symbol ∃ and ∀ refer to existential

and universal quanti�er separately.

Given a signature f , a f-structure A consists of:

• a non-empty set*A called the universe of the structure;

• for each :-ary predicate symbol % in f , a :-ary relation

%A ⊆ *A × · · · ×*A
︸             ︷︷             ︸

:

;

• for each :-ary function symbol 5 in f , a :-ary relation 5A :

*A × · · · ×*A
︸             ︷︷             ︸

:

→ *A ;

• for each constant symbol 2 , an element 2A of*A ;

• for each variable G an element GA of*A .

Given a structureA, variable G , and 0 ∈ *A , we de�ne the struc-
tureA[G ↦→0] to be exactly the same asA except that GA[G ↦→0] = 0.

We de�ne the value A⟦C⟧ of each term C as an element of the uni-

verse*A inductively as follows:

• For a constant symbol 2 we de�ne A⟦2⟧
def
= 2A ;

• For a variable G we de�ne A⟦G⟧
def
= GA ;

• For a term 5 (C1, ..., C: ), where 5 is a :-ary function symbol

and C1, ..., C: are terms, we de�ne

A⟦5 (C1, ..., C: )⟧
def
= 5A (A⟦C1⟧, ...,A⟦C:⟧).

We de�ne the satisfaction relation A ⊨ q between a f-structure

A and f-formula q by induction over the structure of formulas.

• A ⊨ % (C1, ..., C: ) i� (A⟦C1⟧, . . . ,A⟦C:⟧) ∈ %A ;
• A ⊨ q1 ∧ q2 i� A ⊨ q1 and A ⊨ q2;
• A ⊨ q1 ∨ q2 i� A ⊨ q1 or A ⊨ q2;
• A ⊨ ¬q1 i� A ⊭ q1;
• A ⊨ ∃G q1 i� there exists 0 ∈ *A such that A[G ↦→0] ⊨ q1;

• A ⊨ ∀G q1 i� A[G ↦→0] ⊨ q1 for all 0 ∈ *A ;

3.2 Linear Temporal Logic

ltl was introduced into computer science in the 1970s and is used

in various �elds [25, 26, 29, 46, 51]. It uses temporal operators to

express the behavioral constraints that need to be satis�ed by a

system at each moment in the past, present, and future. Let AP be a

set of atomic properties, we can de�ne the syntax of LTL formulas:

q ::= ⊤ | ⊥ | ? | ¬q | q1 ∧ q2 | q1 ∨ q2 | - q1 | q1 * q2 | q1 ' q2

where ? ∈ AP is an atomic proposition; q is an ltl formula; ⊤,⊥
denote true and false, and - ,* , ' are temporal operators, repre-

senting ‘Next’, ‘Until’ and ‘Release’ respectively.

In LTL, * and ' are dual operators, which means q1*q2 ≡
¬(¬q1'¬q2). Also, the following abbreviations are widely used in

LTL: � 0 ≡ ⊤* 0 and � 0 ≡ ⊥ ' 0.

Let Σ = 2�% be the set of alphabet and a trace b = l0l1l2 ... be

an in�nite sequence in Σ
l . For b and : ≥ 0 we use the following

denotations:

• b [:] : the : th element of b

• b: = l0l1 ...l:−1, the pre�x of the trace

• b: = l:l:+1 ..., the later part of the trace

Therefore, b = b:b: . The semantics of ltl formulas with respect

to the in�nite trace b is then given by:

• b |= ⊤ and b ̸ |= ⊥;
• b |= ? i� ? ∈ b [0] where ? is an atom;

• b |= ¬q i� b ̸ |= q ;

• b |= q1 ∧ q2 i� b |= q1 and b |= q2;

• b |= - q i� b1 ⊨ q ;

• b |= q*k i� ∃8 ≥ 0, b8 |= k , and ∀0 ≤ 9 < 8 , b 9 |= q ;

• b |= q'k i� either ∀8 ≥ 0, b1 |= k or, ∃8 ≥ 0 , b8 |= q ∧k and

∀0 ≤ 9 ≤ 8, b 9 |= k .

1916



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

1

2

3

4

5

6

7

aag 4 1 1 1 2 0 1

2

4 7

6

8

6 2 5

8 6 1

(a) ASCII AIGER

6

O0L0 8

C0

10

24

0

(b) Visualization

Figure 3: Example of an AIG

Above is the standard ltl. Now we de�ne LTL% as LTL with

past operators, e.g., PRE and Since, so that we can make statements

on past time instants.

3.3 Model Checking

3.3.1 And-Inverter Graph. An And-Inverter Graph (AIG) is a di-

rected, acyclic graph designed to represent gate-level hardware

circuits [6]. It is a compact and simple sequential hardware model

designed for model checking competition, as there are only three

basic components inside an AIG: AND gates, inverters and latches.

Fig. 3(a) and 3(b) show the ASCII AIGER format and the rep-

resented circuit of an AIG. Figure 3(a)’s �rst line is the header,

denoted by ‘aag’ for ASCII format, followed by counts for di�erent

components: total components, inputs, latches, outputs, AND gates,

bad states, and invariant constraints, in that order. Components

are identi�ed by positive even numbers; with the subsequent odd

number representing components with inverter gates. Especially,

the constants 0 and 1 are preserved to represent ⊤ and ⊥.
Beginning from Line 2, each of the inputs, latches, outputs, con-

straints, bad properties, and and-gates are listed in order. For ex-

ample, the second line says that the input is denoted as the literal

2, while the third line shows that 4 is the latch and 7 is preserved

as the value of the latch in the next cycle. More information are

referred to [6].

Besides circuits, AIG can also be used to formulate SAT and

model-checking problems. Most modern model checkers support

AIG as their input, and many other forms (like SMV [17]) can be

easily translated to AIG through tools in AIG release.

3.3.2 Model Checking Techniques. Given a transition system (~B =

(+ , �,) ) (the model) and a safety property % , model checking an-

swers the question that whether all behaviors of the transition

system satisfy the property. If not, a trace from the initial state to

the bad state, in which the property is violated, will be returned as

a counterexample. Otherwise, an invariant containing the initial

state can be found, indicating that the model satis�es the property.

State-of-the-art model-checking techniques like BMC [8], IMC

[45], IC3/PDR [11, 18, 21] and CAR [42], are all SAT-based and

there isn’t a single technique that can dominate others. BMC is the

�rst technique to introduce SAT [41] into model checking and is

quite e�cient in bug-�nding, but it is an incomplete approach as it

can’t prove the property. IMC complements BMC by computing

interpolants and maintaining an over-approximate state sequence

inside BMC, which enables the construction of a correctness proof.

Compared to BMC and IMC, IC3/PDR and CAR only unroll the

transition relation at most once, which reduces the di�culty of a

single SAT query but increases the total amount of SAT queries.

Notably, CAR has two versions, i.e., Forward CAR and Backward

CAR, which distinguish from each other by search strategy for

the veri�cation. Often, Forward CAR is better to prove correctness

while Backward CAR is more advantageous in �nding bugs [39, 42].

3.4 Veri�cation of Interlocking System

In railway signaling, interlocking refers to the arrangement of sig-

nal apparatus to prevent con�icting movements, such as arranging

signals and signal appliances properly. The properties in the inter-

locking system can be divided into two categories: safety properties

and liveness properties [3]. Safety properties aim to ensure that no

unsafe conditions occur, while liveness properties focus on ensur-

ing that the train eventually leaves the station. The primary goal of

interlocking is to ensure safety. Basic safety goals are usually speci-

�ed at a high abstract level, and various approaches can be used to

implement them at a speci�c station. For a speci�c station, the basic

safety goals are concretized at multiple levels. For instance, abstract

safety rules are �rst categorized by the type of devices and then

instantiated to concrete properties of speci�c devices according to

the con�guration data. In industrial practice, a control table [23] is

created to represent the possible operations of various components

in the railway yard and enforce the principles and constraints.

An example to de�ne basic safety goals from Denmark [37] is:

• Trains/shunt movements must not collide.

• Trains/shunt movements must not derail.

• Trains/shunt movements must not collide with authorized

vehicles or human beings crossing the railway.

• Protect railway employees from trains.

As to formal veri�cation, we take only the prior three goals into

consideration.

4 LIGHTF3 FRAMEWORK

In this section, we present the structure of LightF3. Firstly, we

discuss the general work�ow, followed by an illustrative exam-

ple, and then introduce each component separately. The general

organization is depicted in Fig. 4.

The input of the system can be divided into �ve parts, as shown

in the �gure. These parts are then translated to generate a RIS-

FL model, along with a station-speci�c domain interpretation. The

interpretation guides the instantiation of properties and constraints,

eliminating the quanti�ers and creating concrete properties about

speci�c devices. Typically, one generic property corresponds to

several devices of the same type. These concrete properties together

with the RIS-FL model are then transformed into a common AIGER

model and passed to the model-checking portfolio. If the property

does not hold for the target device, a counterexample is generated.

4.1 Illustrating Example

We would pose an illustrating example of an interlocking system

here. The raw materials obtained in this study cannot be shared

subject to con�dential agreements. Therefore, we would give a

preprocessed model and omit the detailed generation process of
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Figure 4: LightF3 Framework Work-Flow

domain interpretation. With an example track layout (Fig. 5), we

try to verify a simple property:

Example 4.1 (Natural Language Description). If a track that con-

tains switches is released, the following properties should hold:

• The track is logically clear for at least 3 seconds.

• The track is in route released state.

• The track is not route locked or occupied.

And the relevant model may look like this:

Example 4.2 (Relevant Input Model).

• P1-R = (P1-LCE & ¬P1-RR & P1-RLO)

• P3-R = (P3-LCE & ¬P3-RR & P3-RLO)

• P1-LCE = GLOBAL [0,3](P1-A)

• P3-LCE = GLOBAL [0,3](P3-A)

• P1-RR = (P1-B & P1-C)

• P3-RR = (P3-B & P3-C)

• P1-RLO = (¬P1-D & P1-E ∥ P1-F & P1-RLO & ¬P1-LCE)
• P3-RLO = (¬P3-D & P3-E ∥ P3-F & P3-RLO & ¬P3-LCE)
• ...

This is a generic property that all tracks should follow, therefore

the outer wrapper of the property would be like “ALL track ( . . . )”,

which is a syntax sugar. Besides, taking future debugging into con-

sideration, it is suggested to split the property into sub-properties

to avoid unrevealed failure during calculation because of the short

circuit characteristics (yet this is not a must). Therefore, the formal

properties would be:

Example 4.3 (Generic Properties in RIS-FL).

• SubRequirement-1 := ALL track (

SOME switch (BelongToTrack(switch,track)) &

Released(track)→ LogicallyClearElapsed(track) );

• SubRequirement-2 := ALL track (

SOME switch (BelongToTrack(switch,track)) &

Released(track)→ RouteReleased(track) );

• SubRequirement-3 := ALL track (

SOME switch (BelongToTrack(switch,track)) &

Released(track)→ ¬ RouteLockedOccupied(track) );

Then the formula would be instantiated according to the domain

interpretation. As shown in topology (Fig. 5), the whole set of tracks

in this system is {T1, T2, T3, T4}. We can easily conclude from the

Signal
Track
SwitchT1P1

T3 P6P3

P2

P4

T2

T4

P5

Figure 5: An Example of Station Layout

Table 1: belongToTrack

switch track

... ...

P1 T1

P3 T3

... ...

Table 2: State function mapping

Function name Literal name

Released(track) ${track}-(R)

LogicallyClearElapsed(track) ${track}-(LCE)

RouteReleased(track) ${track}-(RR)

RouteLockedOccupied(track) ${track}-(RLO)

concrete properties that it always holds for a track that has no

switches belonging to it. According to the truth table (Table. 1),

only T1, T3 needs further consideration. “Released()” and “Logical-

lyClearElapsed()” are both state functions and should be checked

chronologically. Therefore, we would transform them using the

given mapping rule (Table. 2).

The result afterward shall be as follows:

Example 4.4 (Concrete Properties).

• SubRequirement-1-T1 := (¬ (P1-R) ∥ P1-LCE)
• SubRequirement-1-T3 := (¬ (P3-R) ∥ P3-LCE)
• SubRequirement-2-T1 := (¬ (P1-R) ∥ P1-RR)
• SubRequirement-2-T3 := (¬ (P3-R) ∥ P3-RR)
• SubRequirement-3-T1 := (¬ (P1-R) ∥ P1-RLO)
• SubRequirement-3-T3 := (¬ (P3-R) ∥ P3-RLO)

1918



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

Afterward, we would combine the concrete properties and the

input model together to generate an aiger model. To achieve this,

We translate all the ‘or’ and ‘imply’ statements into ‘and’ statements

together with ‘not’. For example, we would translate “¬0∥1” into
“¬(0&¬1)”. We also introduce intermediate variables to represent

the temporary variables, and latches are introduced to store values

for timed expressions. For example, “%'� 0” implies that 0 should

be stored in a latch, and therefore can be later referred to. The

detailed translation will be shown in Section 4.4.

Once the aiger model is generated, we use a veri�cation portfolio

to verify the model. Here we use IC3-ref [2] as the veri�er, which

quickly determines that all properties are safe.

4.2 Framework Inputs

The inputs of a formal veri�cation system can be generally divided

into two parts: the model of the system and the corresponding

speci�cations. In LightF3, however, due to the distinguishing char-

acteristics of interlocking systems, it has additional data part and

environment constraints part.

The system model describes the correlations between devices

and how the attribute of one device changes in the next cycle based

on all devices, which can be represented using LTL% formulas.

Meanwhile, the properties and constraints are expressed in FQLTL.

Although they may appear similar, properties describe the whole

interlocking system, while constraints serve as preconditions to

compress the state space and speed up veri�cation. The track layout

and con�guration data are maintained by the station and form the

later domain interpretation after a transformation process.

4.3 RIS-FL Model

ltl is widely used to express the behavioral constraints satis�ed by

a system at each moment. However, in interlocking speci�cations,

the domain of entities referred to by the properties is limited. For

example, all the devices whose type is “route" have to satisfy a

particular property %1, ltl can only determine whether %1 is satis-

�ed, but not in the restricted domain “route R”. One step further,

practical properties need to specify in a �nite-time manner. We also

need to add concrete time-range quali�ers to the binary temporal

operators for practical use.

FQLTL is a recently proposed logic [16], which can express rela-

tional and temporal properties so as to restrict the �nite domain

of devices described in LTL speci�cation. FQLTL is accessible to

describe a system with multiple, interrelated devices, the syntax

and semantics of which are de�ned as follows.

De�nition 4.5 (Syntax of FQLTL formulas). A legal FQLTL for-

mula q has the following syntax:

q ::= C | (q) | ¬q | q ∧ q | q ∨ q | q → q |

% (C1, ..., C: ) | ALL G · q | SOME G · q |

PRE q | -q | q * [<1,<2 ] q | q ( [<1,<2 ] q ;

In the above, C, C1, ..., C: are the terms and % is the predicate sym-

bol as de�ned in First-Order Logic. ALL is the universal quanti�er,

which is a syntax sugar of ∀, while SOME is the existential quan-

ti�er, which is a syntax sugar of ∃. Meanwhile, PRE, - , * , and (

are all temporal operators, where PRE is the Previous period oper-

ator and - means the neXt period; * is the Until operator, and (

is the Since (past) operator. And the underlined time range is the

quali�er mentioned above. In particular, we use q1 ' q2 to denote

¬(¬q1*¬q2), i.e., where ' is the dual operator of * ; and we use

the usual abbreviations:

• � [<1,<2 ] q = ⊥ '[<1,<2 ] q

• � [<1,<2 ] q = ⊤ * [<1,<2 ] q

De�nition 4.6 (Semantics of FQLTL formulas). Let b be an in�nite

trace, f be a signature andA be the corresponding f-structure such

that the universe ofA, i.e.,*A , is a �nite set. Then the semantics of

FQLTL formulas are interpreted over the tuple ⟨b,A, 8⟩ such that:

• ⟨b,A, 8⟩ ⊨ C i� A⟦C⟧ = CAD4;

• ⟨b,A, 8⟩ ⊨ % (C1, ..., C: ) i� (A⟦C1⟧, . . . ,A⟦C:⟧) ∈ %A ;
• ⟨b,A, 8⟩ ⊨ (q) i� ⟨b,A, 8⟩ ⊨ q ;
• ⟨b,A, 8⟩ ⊨ ¬q i� ⟨b,A, 8⟩ ⊭ q ;
• ⟨b,A, 8⟩ ⊨ q ∧k i� ⟨b,A, 8⟩ ⊨ q and ⟨b,A, 8⟩ ⊨ k ;
• ⟨b,A, 8⟩ ⊨ q ∨k i� ⟨b,A, 8⟩ ⊨ q or ⟨b,A, 8⟩ ⊨ k ;
• ⟨b,A, 8⟩ ⊨ q → k i� ⟨b,A, 8⟩ ⊭ q or ⟨b,A, 8⟩ ⊨ k ;
• ⟨b,A, 8⟩ ⊨ ALL G · q i� ∀ 0 ∈ *A , ⟨b,A[G ↦→0] , 8⟩ ⊨ q ;
• ⟨b,A, 8⟩ ⊨ SOME G · q i� ∃0 ∈ *A , ⟨b,A[G ↦→0] , 8⟩ ⊨ q ;
• A ⊨ (C1 = C2) i� A⟦C1⟧ = A⟦C2⟧;
• ⟨b,A, 8⟩ ⊨ PRE q i� 8 > 0 0=3 ⟨b,A, 8 − 1⟩ ⊨ q ;
• ⟨b,A, 8⟩ ⊨ - q i� 8 ≥ 0 0=3 ⟨b,A, 8 + 1⟩ ⊨ q ;
• ⟨b,A, 8⟩ ⊨ q * [<1,<2 ] k i�<1 ≤ 8 ≤ <2 and there is 8 ≤

9 ≤ <2 s.t. ⟨b,A, 9⟩ ⊨ k and for all 8 ≤ : < 9, ⟨b,A, :⟩ ⊨ q ;
• ⟨b,A, 8⟩ ⊨ q ( [<1,<2 ]k i�<1 ≤ 8 ≤ <2 and there is<1 ≤

9 ≤ 8 s.t. ⟨b,A, 9⟩ ⊨ k and for all 9 < : ≤ 8, ⟨b,A, :⟩ ⊨ q .

The tuple ⟨b,A, 8⟩ |= q means q holds in ⟨b,A⟩ at step i. In

particular, we de�ne ⟨b,A⟩ |= q i� ⟨b,A, 0⟩ |= q .

Since the universe *A of A is restricted to be �nite, the mo-

tivation comes up straightforwardly that the quanti�ers can be

eliminated for further processing. We call FQLTL without quanti-

�ers LTL% . It di�ers from ltl in that it supports past-time temporal

operators. The syntax and semantics of LTL% are similar to those

of FQLTL, we just omit them here.

De�nition 4.7 (FQLTL Instantiation). For an FQLTL formula

q with the signature f . Let A be its f-structure and *A be the

universe in A. The instantiation of q under A, denoted as � (q), is
an ltl formula such that

• � (% (C1, . . . , C: )) = ⊤ i� (A⟦C1⟧, . . . ,A⟦C:⟧) ∈ %A ; Other-

wise, � (% (C1, . . . , C: )) = ⊥;
• � (q1 ∧ q2) = � (q1) ∧ � (q2);
• � (q1 ∨ q2) = � (q1) ∨ � (q2);
• � (q1 → q2) = ¬� (q1) ∨ � (q2);
• � (¬q) = ¬� (q);
• � (PRE q) = PRE � (q);
• � (-q) = - � (q);
• � (q1 ( [<1,<2 ] q2) = � (q1) ( [<1,<2 ] � (q2);
• � (q1 * [<1,<2 ] q2) = � (q1) * [<1,<2 ] � (q2);
• � (ALL G ·q) =

∧

0∈*A � (q [G ↦→0] ), where q [G ↦→0] is obtained

from q by replacing G to 0;

• � (SOME G · q) =
∨

0∈*A � (q [G ↦→0] ), where q [G ↦→0] is ob-

tained the same as above.

Based on FQLTL, the formal language for railway interlocking

systems can be de�ned as follows:
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De�nition 4.8 (RIS-FL). An interlocking system is a tuple (">34; ,

%A>?B , �>=BCA08=CB) such that %A>?B and �>=BCA08=CB are FQLTL

formulas, and">34; is ({�4E824},)>?>;>6~, {'D;4}) where

• �4E824 := ()~?4, ��, {�CCA })
• )>?>;>6~ := (Vertex = {�4E824}, Edge := {(�4E824, �4E824)})

• 'D;4 is an LTL% -formula over 2{{)~?4 }×{�� }×{�CCA }} .

To illustrate, we give a simple example here.

Example 4.9 (Describe properties using LTL% formulas). Let De-

vices be {)A02:1,)A02:2}, and the universal domain be:

• {Type} := {Track}

• {ID} := {1,2}

• {Attr} := {Released, Locked}

then a trivial informal property:

“� 5 0 CA02: 8B A4;40B43, Cℎ4= 8C 8B =>C ;>2:43.”

is corresponding to the LTL% Rules:

• Track1Released→ ¬ Track1Locked

• Track2Released→ ¬ Track2Locked

4.4 Model Transformation

And-Inverter Graphs (AIGs) is a compact form to formulate model

checking problems [6]. To construct an AIGERmodel, it is necessary

to identify the system’s temporal constraints and subsequently map

them into components in AIGER. This process involves two main

steps. The �rst step instantiates generic properties into concrete

ones, eliminating all the quanti�ers present in the properties.

The property instantiation procedure primarily relies on a recur-

sive calculation, with assistance from the domain interpretation. It

takes as input the expression, keeps a present mapping table from

type to particular device, and generates a ((,)�) tuple, where ( is

the status of calculation represented in a three-valued Bool (True,

False or Undetermined) and )� is the timed Boolean expression.

The rough idea is expressed in pattern-matching-style Pseudo code

in Algorithm 1, where we focus on the Boolean expression here for

simplicity, leaving the calculation of status implicit.

Depending on the expression type, the instantiation procedure

does correlative calculation. As to the logic expression, it just cal-

culates the status using three-valued Boolean logic. If the status is

either True or False, then the result expression)� should be empty.

Otherwise, )� will be concatenated together. Temporal operators

are reserved for later transformation while recursively calculating

sub-expressions. About quanti�ers, it uses domain interpretation

to enumerate device instances and concatenates them together

likewise. Regarding function calls, operations are performed ac-

cording to detailed function types: either mapping to a literal with

the given rule, or returning a Boolean value representing whether

the relationship holds.

After instantiation, if the status ( is true, that means this prop-

erty is bound to satisfy regardless of time and does not need fur-

ther checking. We would leave it out. Otherwise, if the status

( is False, that means it would never be satis�able, though this

should hardly happen in real cases, we would just put a placeholder

“'4B4AE43!8C4A0; & ¬ '4B4AE43!8C4A0;” in it for robustness. Mean-

while, if the status is Undetermined, the corresponding concrete

properties are then generated.

Algorithm 1: Property Instantiation Algorithm

Input: A FQLTL property ? , Main Device Type C , Device

Domain �

Output: A set of corresponding LTL% properties !

! := {}
foreach 34E8 8= � do

8C4< ← {C := 34E8 }
;8 ← �#() (?, 8C4<)
! ← ! ∪ ;8

function INST(?, 8C4<)

<0C2ℎ ? F8Cℎ

| �;; C~? ?1 ⇒
{34E} ← 64C34E824 (C~?, �)
A4CDA=

∧

(�#() (?1, 8C4< ∪ C~? ≔ 34E8 ))
| (><4 C~? ?1 ⇒
{34E} ← 64C34E824 (C~?, �)
A4CDA=

∨

(�#() (?1, 8C4< ∪ C~? ≔ 34E8 ))
| ?1 ∧ ?2 ⇒
A4CDA= �#() (?1, 8C4<) ∧ �#() (?2, 8C4<)
| ?1 ∨ ?2 ⇒
A4CDA= �#() (?1, 8C4<) ∨ �#() (?2, 8C4<)
| ¬?1 ⇒ A4CDA= ¬ �#() (?1, 8C4<)
| %'� ? ⇒ A4CDA= %'� �=BC (?)
| - ? ⇒ A4CDA= - �=BC (?)
| ?1 * [C1,C2 ] ?2 ⇒
A4CDA= �#() (?1) * [C1,C2 ] �#() (?2)
| ?1 ( [C1,C2 ] ?2 ⇒
A4CDA= �#() (?1) ( [C1,C2 ] �#() (?2)
| 34 5 0D;C ⇒
(∗ DB4 3><08= 8=C4A?A4C0C8>= C> 20;2D;0C4 ∗)

Algorithm 2: Generate Aiger

Input:">34; <, %A>?4AC~ B4C %, �>=BCA08=C B4C �

Output: �864A ">34; �

A← {}
foreach A8 8= <.AD;4B do

�← � ∪ CA0=B (A8 )

foreach ?8 8= % do
�← � ∪ CA0=B (�#() (?8 ))
"0A: (?8 , ‘%A>?4AC~

′, �)

foreach 28 8= � do
�← � ∪ CA0=B (�#() (28 ))
"0A: (28 , ‘�>=BCA08=C

′, �)

To translate propositional logic to a combination of basic compo-

nents is trivial (Algorithm 2, 3). The basic idea is to use appropriate

latches whenever a time operator is used. For example, a ‘PRE’ oper-

ator means to fetch the prior cycle’s value and can be represented as

a latch in aiger. Similar operations can be done with this approach.

Combining the model expressions and concrete properties, the aiger

model is �nally produced. Notably, in Algorithm 3, function ‘Var’

maps an LTL% formula to an integer; ‘And (c, a, b)’ creates an and-

gate whose output is c and inputs are a, b; ‘Latch (a, b)’ creates a

latch whose current and next values are a, b respectively.

1920



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

4.5 Veri�cation Portfolio

Over the past few decades, model checking techniques have under-

gone signi�cant evolution, enabling the solution of increasingly

complex problems. Although BMC has been the go-to technique

for hardware model checking, it has certain drawbacks, such as

the inability to prove the absence of errors without special han-

dling [8]. Recently, new techniques such as CAR, IMC, IC3/PDR

have emerged, and while they may produce a larger number of SAT

queries than BMC, most of them can be handled well by modern

SAT solvers. Each of these techniques has its own strengths and

weaknesses, and there is no clear winner. For example, IC3 can

solve instances that BMC cannot and vice-versa [18]; The same is

true among AVY [49], QUIP [33] and IC3. BMC outperforms IMC

on unsafe instances [7]; CAR is able to solve some instances that

are not solved by any other techniques, but not all [42].

Therefore, a veri�er portfolio may be preferable to relying on

a speci�c veri�er. However, few prior works have employed the

latest model-checking techniques for interlocking systems. In our

framework, LightF3, we can easily add any latest aiger-based veri�er

without additional cost. This allows us to e�ectively solve practical

interlocking problems using the latest model-checking techniques

and provide rich feedback for future design.

Algorithm 3: The Trans Procedure

Input: !)!% 5 >A<D;0 q

Output: �864A ">34; �

�← match q F8Cℎ

| atom⇒ ∅
| ¬q1⇒
�=3 (+0A (¬q1),¬+0A (q1),)AD4) ∪ CA0=B (q1)
| q1 ∨ q2⇒ �=3 (+0A (¬(q1 ∨ q2)),+0A (¬q1),+0A (¬q2))
∪ CA0=B (q1) ∪ CA0=B (q2)
| q1 ∧ q2 ⇒
�=3 (+0A (q1 ∧ q2),+0A (q1),+0A (q2))
∪ CA0=B (q1) ∪ CA0=B (q2)
| q1→ q2⇒
CA0=B (¬q1 ∨ q2)
| q1↔ q2 ⇒
CA0=B ((q1 → q2) ∧ (q2 → q1))
| %'� q1 ⇒
!0C2ℎ(+0A (%'� q1),+0A (q1)) ∪ CA0=B (q1)
| - q1 ⇒
!0C2ℎ(+0A (q1),+0A (- q1)) ∪ CA0=B (q1)
| q1 * [C1,C2 ] q2⇒
match C2 with

| C1⇒ CA0=B (q2)
| _⇒ CA0=B ( - C1 (q2 ∨ (q1 ∧ - (q1 * [C1+1,C2 ] q2))))
| q1 ( [C1,C2 ] q2⇒
match C1 with

| C2⇒ CA0=B (q2)
| _⇒ CA0=B (%'�C2 (q2 ∨ (q1 ∧ %'� (q1( [C1,C2−1]q2))))

5 EVALUATION

With a friendly interface, the bar of writing formal properties is

lowered to a great extent. However, this may possibly incur an

increase in transformation costs. Besides, the extensible design

Table 3: Station Size

Station Track Route Switch Signal

Alice 14 8 3 12

Bob 56 70 14 37

Charlie 171 503 87 152

David 151 720 79 145

Eve 151 499 74 140

allows any state-of-the-art veri�ers to give it a try on interlocking

problems. For our evaluation, we are interested in testing whether

the model transformation is an e�ciency bottleneck that causes

failure, and how di�erent veri�ers behave in interlocking contexts.

5.1 Evaluation Setup

We run experiment on a cluster of servers, which is equipped with

an Intel Xeon Gold 6132 14-core processor at 2.6GHz and 96GB

RAM. And the version of the operating system is Red Hat 4.8.5-16.

We conducted the experiment to evaluate the performance of

LightF3 using �ve sample stations of varying sizes (Table. 3). For

testing purposes, we utilized a set of 206 abstract properties. To

ensure con�dentiality, we renamed the stations based on the

requirements of our industrial partner. Except for Station Eve

which has 262 unsafe concrete properties among 8002 ones, all the

other concrete properties are safe. This corresponds to the industrial

fact that most properties to be veri�ed do hold. The experiment is

conducted serially, though some veri�ers support parallel like IC3.

5.2 Evaluation Results

RQ1: What is the cost for model transformation in LightF3?

We set three checkpoints in the life cycle, by which we record

the time consumption during each period. Property instantiation

and aiger generation together make up the model transformation

procedure, as is shown in Fig. 6.

Trivially, the complexity of instantiation is utmost $ (
&
∏

8=1
=8 ),

where & is the count of quanti�ers and =8 is the sum of devices

of target type. With caching strategy and limited max parameter

count, the complexity can be lower to $ (
=A�∑

9=1
(
? 9∏

8=1
=8, 9 )), where =A�

means the number of relative functions, ? 9 the parameter of the

9-th function and=8, 9 means the number of the 8-th parameter in the

9-th function. The short circuit characteristics in logic computation

further reduce the amount of calculation. As to aiger generation,

the complexity is linear with respect to amount of literals, which

grows at an approximate linear velocity empirically. In summary,

the model transformation procedure requires a moderate amount

of time and exhibits slow growth as the model scales up.

In veri�cation, however, model checking techniques require

traversing all possible routes and states which is at least polynomial

in complexity, and even degrade into exponential as the problem

gets more complex. Though some implementations like Backward

CAR do behave well, the time cost in most implementations grows

at a high rate with respect to amount of literals.

From the result shown in Fig. 6, we can see that time consump-

tion of model transformation grows with scale at a low speed, while
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veri�cation time grows rapidly. Besides, we take IC3-ref as an exam-

ple, see Fig. 7. The proportion of instantiation and aiger generation

are both small as to large scale stations. All these corresponds with

our perception. We can conclude that either the problem is trivial

to verify, under such circumstance there’s no threat to fail; or the

transformation takes a small percentage of time. We summarize

that model transformation is not likely to become an e�ciency

bottleneck, let alone directly causing solving failure.

RQ2: How do di�erent veri�ers behave in the context of

interlocking?

Generally speaking, Backward CAR and IC3-ref perform best

in interlocking veri�cation. They solve the most cases (Fig. 8) and

consumed moderate time (Fig. 6). Forward CAR comes after the

prior two, while the others can only solve a few cases as to large

scale problems, and are somehow not so suitable for practical inter-

locking veri�cation.

For correctness proof, BMC has an inherent drawback, not sur-

prising IIMC-bmc not doing well. Forward CAR is designed to be

better in verifying safety [39], while the result is on the contrary.We

then further investigate in abstract property level within station Eve.

In fact, ForwardCAR does better on particular properties (Fig. 10(a)).

But it is too slow or even fails on some ones, and therefore slows

down the veri�cation of whole property. Adding a supplement,

Forward CAR fails to �nd all the counterexamples, directly leading

to the failure. That is possibly the reason why Backward CAR does

better than Forward CAR. We also contact maintainers for help, but

so far no convincing probable cause has been found.

Backward CAR performs better than IC3-ref in most models:

not only in the result obtained but also in speed. However, there

do exist some exceptions, like Station Charlie, where IC3-ref can

solve more cases than Backward CAR. More speci�cally, concretize

to abstract property level, it can be seen in Fig. 10(b) that they

each has its own advantage, while Backward CAR performs better

on the whole. The result is in line with our expectations that no

model-checking techniques can outperform others in all aspects,

proving the e�ectiveness of the extensible design in LightF3.

Furthermore, we select all unsafe instances to shed light on

bug �nding. IIMC-ic3 and Forward CAR has far lower e�ciency.

Among the other three implementations left, BMC has an inherent

talent to �nd counterexamples, while CAR and IC3 each can �nd

bugs that BMC cannot. We compare them pairwise and draw the

scatter diagrams ( Fig. 9). As is shown, Backward CAR can �nd most

counterexamples faster than IIMC-bmc (Fig. 9(a)), while IIMC-bmc

does better on most cases than IC3-ref (Fig. 9(b)), which cannot

even �nish all in time. Backward CAR outperforms IC3-ref in all the

counter cases (Fig. 9(c)). To summarize, Backward CAR performs

best in most unsafe instances, but not all.

RQ3: How e�ective is it for veri�ers to complement each

other?

As is illustrated in RQ2, Backward CAR and IC3-ref have their

advantages in overall performance, while IIMC-bmc is sometimes

the best in �nding counter examples. We try to use IC3-ref and

IIMC-bmc to complement Backward CAR. We �rst union all the

cases solved by each veri�er and get the ceiling, with which we try

omitting and backtracking to eliminate those of few contribution.

Once there is nothing to omit, we get the minimal useful portfolio.

In Fig. 11, with the same solving order and time limit, IC3-ref

and IIMC-bmc moderately enhance the problem-solving capability,

albeit to a limited extent. Besides, adding other veri�ers to the port-

folio cannot take one step further. Distinguished from the fact that

IC3/PDR and Forward CAR perform far better than Backward CAR

on proving correctness in hardware veri�cation [39, 42], Backward

CAR performs well in verifying interlocking systems. It utilizes a

di�erent searching strategy compared to IC3/PDR and Forward

CAR within the veri�cation process. The hypothesis is the model

structure of an interlocking system may be veri�ed more e�ciently

by Backward CAR. This observation helps reveal the characteristic

of interlocking veri�cation and is worth further investigation.

6 EXPERIENCE & LESSON

We initiated the design and development of the LightF3 framework

in 2020, and over the course of the past three years, we have gained

valuable experience and lessons, which we share in this section.

One of the most signi�cant lessons we have learned is the im-

portance of domain knowledge over speci�c implementation. We

dedicated a substantial amount of time to consulting technicians

and experts in the �eld to acquire deep domain knowledge of in-

terlocking systems. This knowledge proved crucial in designing

and developing the property instantiation procedure. When instan-

tiating each function within a FQLTL property, we relied on the

guidance of technicians to understand the meaning and speci�c

requirements of the function. For example, when instantiating the

function BelongToTrack(switch, track), we consult technicians to

understand its meaning (which is typically checking whether a

speci�c switch belongs to a particular track) and how we determine

its value for a given switch and track. Technicians may guide us to
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refer to speci�c Excel sheets in the con�guration data and verify

whether the switch is located in a speci�c cell. This information

then guides our code implementation.

Another important experience is that the best model-checking

algorithm extensively benchmarked in the hardware-design do-

main may not be the most suitable one for interlocking system

veri�cation. Although IC3/PDR is considered the most advanced

model checking algorithm in terms of overall performance, and

its performance on the HWMCC benchmark is much better than

Backward CAR, Backward CAR surprisingly outperforms IC3/PDR

and others on the interlocking system veri�cation benchmark. This

could be because the interlocking system veri�cation benchmark

is unique, or because Backward CAR utilizes a di�erent searching

strategy compared to IC3/PDR. Therefore, it is always necessary

and bene�cial to try using a model checking portfolio, instead of

only relying on the best algorithm by default.

7 DISCUSSION & CONCLUSION

Considerable e�orts have been dedicated to modeling and verifying

interlocking systems. However, there is a lack of formal descrip-

tions for these systems, resulting in di�erent perspectives and a

lack of common understanding. In this paper, we address this gap

by providing a formal description of the interlocking system and

proposing a speci�c modeling and veri�cation language, RIS-FL,

based on the FQLTL logic.

Previous works have integrated various model-checking algo-

rithms into their frameworks. However, these integrations often

form closed chains that are challenging to extend. While model

checking algorithms have rapidly advanced in recent decades, pre-

vious works have struggled to keep up with the state-of-the-art ver-

i�cation techniques. To address this issue, our framework, LightF3,

is designed to be lightweight and extensible.

To conclude, we present LightF3, a lightweight and fully-process

formal framework to model and verify Railway interlocking sys-

tems. A formal language RIS-FL based on FQLTL is provided for

modeling the system and speci�cations. The RIS-FL models are au-

tomatically transformed into aiger models, enabling the invocation

of third-party checkers to perform the veri�cation task. To assess

the e�ectiveness and e�ciency of LightF3, we conduct evaluations

on �ve real station instances obtained from our industrial partner.

We further investigate and analyze the statistics of the veri�cation

results using various model-checking techniques. Overall, LightF3

o�ers a powerful and practical solution for modeling and verify-

ing railway interlocking systems, bridging the gap between formal

methods and railway domain expertise.

DATA AVAILABILITY

The data and artifacts that support this paper are available at [1].

ACKNOWLEDGEMENT

We thank anonymous reviewers for their helpful comments. This

work is supported by the National Natural Science Foundation of

China (NO. U21B2015 and 62372178), and the Shanghai Collabora-

tive Innovation Center of Trusted Industry Internet Software.

1923



LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] [n. d.]. Data Availability. https://doi.org/doi.org/10.1145/3580405
[2] [n. d.]. IC3Ref. https://github.com/arbrad/IC3ref.
[3] Bowen Alpern and Fred B Schneider. 1987. Recognizing safety and liveness.

Distributed computing 2, 3 (1987), 117–126. https://doi.org/10.1007/bf01782772
[4] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. 1999. Météor:

A Successful Application of B in a Large Project. In FM’99 — Formal Methods, Jean-
nette M. Wing, Jim Woodcock, and Jim Davies (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 369–387. https://doi.org/10.1007/3-540-48119-2_22

[5] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media. https://doi.org/10.1007/978-3-662-07964-5

[6] Armin Biere. 2007. The AIGER and-inverter graph (AIG) format version 20071012.
(2007). https://doi.org/10.35011/fmvtr.2007-1

[7] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yun-
shan Zhu. 1999. Symbolic model checking using SAT procedures instead of
BDDs. In Proceedings of the 36th annual ACM/IEEE Design Automation Conference.
317–320. https://doi.org/10.1109/DAC.1999.781333

[8] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. [n. d.]. Bounded model checking. Handbook of satis�ability 185, 99
([n. d.]), 457–481. https://doi.org/10.3233/978-1-58603-929-5-457

[9] Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini, Matteo Tempestini,
and Leonardo Cipriani. 2014. Validation of Railway Interlocking Systems by
Formal Veri�cation, A Case Study. In Software Engineering and Formal Methods,
Steve Counsell and Manuel Núñez (Eds.). Springer International Publishing,
Cham, 237–252. https://doi.org/10.1007/978-3-319-05032-4_18

[10] Arne Borälv. 2018. Interlocking Design Automation Using Prover Trident. In
Formal Methods, Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik de Vink (Eds.).
Springer International Publishing, Cham, 653–656. https://doi.org/10.1007/978-
3-319-95582-7_39

[11] Aaron R Bradley. 2011. SAT-based model checking without unrolling. In Inter-
national Workshop on Veri�cation, Model Checking, and Abstract Interpretation.
Springer, 70–87. https://doi.org/10.1007/978-3-642-18275-4_7

[12] Simon Busard, Quentin Cappart, Christophe Limbrée, Charles Pecheur, and
Pierre Schaus. 2015. Veri�cation of railway interlocking systems. In ESSS. https:
//doi.org/10.48550/arXiv.1506.03554

[13] Quentin Cappart, Christophe Limbrée, Pierre Schaus, and Axel Legay. 2015. Veri-
�cation by discrete simulation of interlocking systems. In 29th Annual European
Simulation and Modelling Conference. 402–409. https://doi.org/10.1109/HASE.
2017.10

[14] Quentin et al. Cappart. 2017. Veri�cation of Interlocking Systems Using Statistical
Model Checking. In 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE). 61–68. https://doi.org/10.1109/HASE.2017.10

[15] Basri Tugcan Celebi and Ozgur Turay Kaymakci. 2016. Verifying the accuracy of
interlocking tables for railway signalling systems using abstract state machines.
Journal of Modern Transportation 24 (2016), 277–283. https://doi.org/10.1007/
s40534-016-0119-1

[16] Yu Chen, Xiaoyu Zhang, and Jianwen Li. 2022. Finite Quanti�ed Linear Temporal
Logic and Its Satis�ability Checking. In Arti�cial Intelligence Logic and Applica-
tions: The 2nd International Conference, AILA 2022, Shanghai, China, August 26–28,
2022, Proceedings. Springer, 3–18. https://doi.org/10.1007/978-981-19-7510-3_1

[17] A. Cimatti, E. Clarke, F. Giunchiglia, andM. Roveri. 2000. NUSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer 2,
4 (2000), 410–425. https://doi.org/10.1007/s100090050046

[18] Alessandro Cimatti and Alberto Griggio. 2012. Software model checking via IC3.
In International Conference on Computer Aided Veri�cation. Springer, 277–293.
https://doi.org/10.1007/978-3-642-31424-7_23

[19] Edmund M Clarke. 1997. Model checking. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Springer, 54–56.
https://doi.org/10.1007/BFb0058022

[20] Dalay Israel de Almeida Pereira, David Deharbe, Matthieu Perin, and Philippe
Bon. 2019. B-Speci�cation of Relay-Based Railway Interlocking Systems Based on
the Propositional Logic of the System State Evolution. In Reliability, Safety, and
Security of Railway Systems. Modelling, Analysis, Veri�cation, and Certi�cation,
Simon Collart-Dutilleul, Thierry Lecomte, and Alexander Romanovsky (Eds.).
Springer International Publishing, Cham, 242–258. https://doi.org/10.1007/978-
3-030-18744-6_16

[21] Niklas Eén, AlanMishchenko, and Robert Brayton. 2011. E�cient implementation
of property directed reachability. In 2011 Formal Methods in Computer-Aided
Design (FMCAD). IEEE, 125–134. http://dl.acm.org/citation.cfm?id=2157675

[22] BS EN. 2011. 50128 (2011). Railway Applications-Communication, Signalling
and processing systems: Software for railway control and protection systems.
International Electrotechnical Commission (2011).

[23] Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessandro Fantechi.
2011. Model checking interlocking control tables. In FORMS/FORMAT 2010.
Springer, 107–115. https://doi.org/10.1007/978-3-642-14261-1_11

[24] Alessio Ferrari, Maurice H. ter Beek, Franco Mazzanti, Davide Basile, Alessandro
Fantechi, Stefania Gnesi, Andrea Piattino, and Daniele Trentini. 2019. Survey
on Formal Methods and Tools in Railways: The ASTRail Approach. In Reli-
ability, Safety, and Security of Railway Systems. Modelling, Analysis, Veri�ca-
tion, and Certi�cation, Simon Collart-Dutilleul, Thierry Lecomte, and Alexan-
der Romanovsky (Eds.). Springer International Publishing, Cham, 226–241.
https://doi.org/10.1007/978-3-030-18744-6_15

[25] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear temporal logic and linear
dynamic logic on �nite traces. AAAI Press (2013). https://dl.acm.org/doi/10.5555/
2540128.2540252

[26] Giuseppe De Giacomo and Moshe Y. Vardi. 2015. Synthesis for LTL and LDL
on �nite traces. AAAI Press (2015). https://dl.acm.org/doi/abs/10.5555/2832415.
2832466

[27] Tim Gonschorek, Ludwig Bedau, and Frank Ortmeier. 2018. Bringing formal
methods on the rail. Safety and Reliability – Safe Societies in a Changing World
(2018). https://doi.org/10.1201/9781351174664-92

[28] Anne E. Haxthausen, Jan Peleska, and Ralf Pinger. 2014. Applied Bounded
Model Checking for Interlocking System Designs. In Software Engineering and
Formal Methods, Steve Counsell and Manuel Núñez (Eds.). Springer International
Publishing, Cham, 205–220. https://doi.org/10.1007/978-3-319-05032-4_16

[29] G. J. Holzmann. 1997. The Model Checker - SPIN. IEEE Transactions on Software
Engineering 23 (1997), 279–295. https://doi.org/10.1109/32.588521

[30] Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. 2013. The SafeCap
Platform for Modelling Railway Safety and Capacity. In Computer Safety, Re-
liability, and Security, Friedemann Bitsch, Jérémie Guiochet, and Mohamed
Kaâniche (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 130–137. https:
//doi.org/doi.org/10.1007/978-3-642-40793-2_12

[31] Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky. 2018.
Formal Veri�cation of Signalling Programs with SafeCap. In Computer Safety,
Reliability, and Security, Barbara Gallina, Amund Skavhaug, and Friedemann
Bitsch (Eds.). Springer International Publishing, Cham, 91–106. https://doi.org/
10.1007/978-3-319-99130-6_7

[32] Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky. 2022.
Practical Veri�cation of Railway Signalling Programs. IEEE Transactions on
Dependable and Secure Computing (2022), 1–1. https://doi.org/10.1109/TDSC.
2022.3141555

[33] Alexander Ivrii and Arie Gur�nkel. 2015. Pushing to the top. In 2015 Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 65–72. https://doi.org/10.
1109/FMCAD.2015.7542254

[34] Phillip James, Andy Lawrence, FaronMoller, Markus Roggenbach, Monika Seisen-
berger, Anton Setzer, Karim Kanso, and Simon Chadwick. 2014. Veri�cation of
Solid State Interlocking Programs. In Software Engineering and Formal Meth-
ods, Steve Counsell and Manuel Núñez (Eds.). Springer International Publishing,
Cham, 253–268. https://doi.org/10.1007/978-3-319-05032-4_19

[35] Juan Bicarregui Jim Woodcock, Peter Gorm Larsen and John S. Fitzgerald. 2009.
Formal methods: Practice and experience. ACM Comput. Surv. 41 (2009). https:
//doi.org/10.1145/1592434.1592436

[36] Andrew Lawrence, Monika Seisenberger, Andrew Lawrence, and Monika Seisen-
berger. 2010. Veri�cation of railway interlockings in scade. In AVOCS’10,
Proceedings of the 10th International Workshop on Automated Veri�cation of
Critical Systems and the Rodin User and Develop Workshop. Springer, 112–114.
https://www.academia.edu/download/30935387/FinalVersion.pdf

[37] Marie Le Bliguet and Andreas Andersen Kjær. 2008. Modelling interlocking
systems for railway stations. Master’s thesis. Technical University of Denmark,
DTU, DK-2800 Kgs. Lyngby, Denmark.

[38] Michael Leuschel and Michael Butler. 2003. ProB: A model checker for B. In
International symposium of formal methods europe. Springer, 855–874.

[39] Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and Moshe Y
Vardi. 2018. Simplecar: An e�cient bug-�nding tool based on approximate
reachability. In International Conference on Computer Aided Veri�cation. Springer,
37–44. https://doi.org/10.1007/978-3-319-96142-2_5

[40] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He. 2013.
LTL Satis�ability Checking Revisited. In 2013 20th International Symposium on
Temporal Representation and Reasoning (TIME). https://doi.org/10.1109/TIME.
2013.19

[41] J. Li, S. Zhu, G. Pu, and M. Vardi. 2015. SAT-based Explicit LTL Reasoning. Haifa
Veri�cation Conference (2015). https://doi.org/10.1007/978-3-319-26287-1_13

[42] Jianwen Li, Shufang Zhu, Yueling Zhang, Geguang Pu, and Moshe Y Vardi.
2017. Safety model checking with complementary approximations. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
95–100. https://doi.org/10.1109/ICCAD.2017.8203765

[43] Bidhan Malakar and B.K. Roy. 2014. Railway fail-safe signalization and inter-
locking design based on automation Petri Net. In International Conference on
Information Communication and Embedded Systems (ICICES2014). 1–4. https:
//doi.org/10.1109/ICICES.2014.7034154

[44] Ma Maofei and Zhang Yong. 2020. Modeling and Formal Veri�cation of Interlock-
ing System Based on UML and HCPN. In 2020 World Conference on Computing
and Communication Technologies (WCCCT). 47–52. https://doi.org/10.1109/

1924

https://doi.org/doi.org/10.1145/3580405
https://github.com/arbrad/IC3ref
https://doi.org/10.1007/bf01782772
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1109/DAC.1999.781333
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-319-05032-4_18
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.48550/arXiv.1506.03554
https://doi.org/10.48550/arXiv.1506.03554
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/s40534-016-0119-1
https://doi.org/10.1007/978-981-19-7510-3_1
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-030-18744-6_16
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-030-18744-6_15
https://dl.acm.org/doi/10.5555/2540128.2540252
https://dl.acm.org/doi/10.5555/2540128.2540252
https://dl.acm.org/doi/abs/10.5555/2832415.2832466
https://dl.acm.org/doi/abs/10.5555/2832415.2832466
https://doi.org/10.1201/9781351174664-92
https://doi.org/10.1007/978-3-319-05032-4_16
https://doi.org/10.1109/32.588521
https://doi.org/doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1109/TDSC.2022.3141555
https://doi.org/10.1109/TDSC.2022.3141555
https://doi.org/10.1109/FMCAD.2015.7542254
https://doi.org/10.1109/FMCAD.2015.7542254
https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://www.academia.edu/download/30935387/FinalVersion.pdf
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1007/978-3-319-26287-1_13
https://doi.org/10.1109/ICCAD.2017.8203765
https://doi.org/10.1109/ICICES.2014.7034154
https://doi.org/10.1109/ICICES.2014.7034154
https://doi.org/10.1109/WCCCT49810.2020.9170006
https://doi.org/10.1109/WCCCT49810.2020.9170006


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai Miao, Jianwen Li, and Geguang Pu

WCCCT49810.2020.9170006
[45] Kenneth L McMillan. 2003. Interpolation and SAT-based model checking. In

International Conference on Computer Aided Veri�cation. Springer, 1–13. https:
//doi.org/10.1007/978-3-540-45069-6_1

[46] T. Michaud and M. Colange. 2018. Reactive synthesis from LTL speci�cation
with Spot. In In Proceedings of the 7th Workshop on Synthesis.

[47] Andrew Nash, Daniel Huerlimann, Jörg Schütte, and Vasco Paul Krauss. 2004.
Railml† a standard data interface for railroad applications. WIT Transactions on
The Built Environment 74 (2004). https://doi.org/10.2495/CR040241

[48] Kristin Y. Rozier and Moshe Y. Vardi. 2007. LTL Satis�ability Checking. In
International SPIN Workshop on Model Checking of Software. https://doi.org/10.

1007/978-3-540-73370-6_11
[49] Yakir Vizel and Arie Gur�nkel. 2014. Interpolating property directed reachability.

In International Conference on Computer Aided Veri�cation. Springer, 260–276.
https://doi.org/10.1007/978-3-319-08867-9_17

[50] Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. 2017. Formal modelling
and veri�cation of interlocking systems featuring sequential release. Science of
Computer Programming 133 (2017), 91–115. https://doi.org/10.1016/j.scico.2016.
05.010 Formal Techniques for Safety-Critical Systems (FTSCS 2014).

[51] W. Zhu. 2021. Big Data on Linear Temporal Logic Formulas. In 2021 IEEE 4th
Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC). https://doi.org/10.1109/IMCEC51613.2021.9482368

1925

https://doi.org/10.1109/WCCCT49810.2020.9170006
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.2495/CR040241
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-319-08867-9_17
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1109/IMCEC51613.2021.9482368

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 First-Order Logic
	3.2 Linear Temporal Logic
	3.3 Model Checking
	3.4 Verification of Interlocking System

	4 LightF3 Framework
	4.1 Illustrating Example
	4.2 Framework Inputs
	4.3 RIS-FL Model
	4.4 Model Transformation
	4.5 Verification Portfolio

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Experience & Lesson
	7 Discussion & Conclusion
	References

