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Abstract. Model checking is a framework for automated formal verifi-
cation of transition systems, like hardware designs. Two leading model-
checking techniques, PDR and CAR, are based on multiple calls to a SAT
solver, for the purpose of finding a path to a bug or proving its absence.
They build sequences of formulas, called frames, that represent approxi-
mated sets of states, e.g., a frame can contain an over-approximation of
the states that can reach the negated property within a given number of
steps. Part of the process is to make these sets more precise, i.e., less ap-
proximating, and this is done by strengthening the frames with negation
of states that were proven to be spurious. A key component for perfor-
mance is the ability of these engines to generalize those states and thus
accelerate the process of making the frames more precise. This is done by
strengthening them with the unsatisfiable cores that the SAT solver re-
turns. In this work, we suggest several performance improvements to this
process, most notably a technique for generating multiple such cores in
linear time and adding them simultaneously to the frames. Our results
show that our implementation of these techniques, on top of Simple-
CAR, not only improves its performance, but also solves more (unsafe)
cases than any other model-checker in the public domain, and solves in-
stances from the HWMCC that no other model checker can solve, hence
it contributes to the state-of-the-art.

1 Introduction

Model checking is an automatic formal-verification technique that is central in
the hardware design community [3,15]. Given a model M and a temporal prop-
erty P over its variables, it checks whether all the behaviors of M satisfy P ,
i.e., whether M |= P . Once a system behavior is detected to violate P , the
model checker returns a counterexample as the evidence, which demonstrates
the execution of the system leading to the property violation. Such a process is
called bug-finding. If P is a safety property, the violation of P is witnessed by a
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counterexample made of a finite number of states. It is well known that model
checking on safety properties can be reduced to reachability analysis [8].

State-of-the-art safety model checking techniques include Bounded Model
Checking (BMC) [4, 6], Interpolation Model Checking (IMC) [18], Property Di-
rected Reachability (PDR) (also called IC3) [7,11], and Complementary Approx-
imate Reachability (CAR) [17], all of which integrate a SAT solver internally.
BMC is an incomplete method (it is only used for finding bugs, not proving
their absence) and as such, is empirically very fast at finding relatively shallow
bugs (i.e., after a relatively small number of steps from the initial state). IMC,
PDR, and CAR are complete but are generally not as fast as BMC in shallow
bug-finding, and none of the existing implementations of those techniques domi-
nate the other. In [16,17] it was empirically shown that within a given time and
hardware resources, CAR is able to solve unsafe (i.e., instances in which the prop-
erty fails) instances that BMC cannot, and safety instances that IMC and PDR
cannot, while the converse is true as well. Therefore, a portfolio consisting of
different techniques is often maintained for different verification tasks. However,
hardware model-checking (a Pspace problem) always falls short of the perfor-
mance needs in the industry when it comes to verifying large designs. Indeed,
performance optimization of SAT-based model checkers is an active research
area. Some recent examples are [27], [10] and [22].

In this paper, we focus on improving the performance of CAR. We will de-
scribe in detail how CAR works in Section 3. It has many similarities to PDR,
which is better known, but also several distinctive features. For now, let us
mention that similar to PDR, it relies on many SAT calls over relatively easy
formulas. One of its elements is a sequence of formulas O1 . . . Ok, called the
over-approximating frames (or O-frames, for short), where Oi, 1 ≤ i ≤ k over-
approximates the states that can reach ¬P within i steps. CAR gradually makes
these frames more precise, i.e., less over-approximating, by removing from them
states that cannot reach ¬P within the given number of steps. One of the key el-
ements of this process is generalization, that is, the ability to remove many such
states at once. This is done by finding the unsatisfiable core (UC) of unsatisfiable
SAT calls. The research that we report here is focused on finding multiple such
UCs, which accelerates the narrowing process of the O-frames. To explain our
contribution, let us first describe briefly how modern SAT solvers find UCs.

The input to every SAT call in CAR (and PDR) takes the form of
∧

l∈A l∧ϕ,
where ϕ is a Boolean formula in Conjunctive Normal Form (CNF) and A consists
of a sequence of literals, called the assumptions. Almost all modern CDCL-
based SAT solvers as of Minisat [12] support assumptions. They position the
literals in A, in order, as their first decisions, and perform Boolean Constraint
Propagation (BCP) as usual. Unsatisfiability is detected when the BCP of an
assumption contradicts the value of another literal (because recall, all the literals
in A and those that are implied by them via BCP are implied by the formula
regardless of any decision). By analyzing the trail, the solver can detect which of
the assumptions contributed to the conflict and emit this list of assumptions as
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the UC, which is essentially a compact reason for the unsatisfiability. In other
words, the UC is a subset of A that is sufficient for making ϕ unsatisfiable.

There can be multiple UCs in a given unsatisfiable formula, and the order
of the assumptions may affect the UC that is found (and this, in turn, affects
the overall performance of the model-checker, whether it is CAR or PDR). More
explicitly, the literals that are propagated earlier are more likely to appear in the
returned UC. Indeed, prior work leveraged this phenomenon to improve perfor-
mance. Specifically, the IC3ref model checker [14], which implements the original
IC3 algorithm, sorts the literals in A in descending order based on their appear-
ance frequencies. The SimpleCAR model-checker, which implements CAR, uses
two different literal-ordering strategies, as reported in [10]: Intersection, which
prioritizes literals that are both in the current state and the latest generated
UC, and Rotation, which prioritizes literals that are present in all previously
explored states. This makes these literals more likely to appear as part of the
generated UC and empirically improves the performance of bug-finding. Indeed,
SimpleCAR is one of the baseline implementations against which we compare
our contributions.

The research that we report here, is focused on computing and adding more
than one UC at a time, hence accelerating the narrowing of the O-frames. We
prove that once the SAT solver proved that the formula is unsatisfiable, it is a
linear-time operation to find multiple UCs, simply by rerunning the solver incre-
mentally, with a different assumptions order. Since all the learned clauses remain
from the initial run, it is guaranteed that the solver will detect unsatisfiability
solely based on deciding the assumptions (or a subset thereof) and applying
BCP. However, our experiments with variants of this approach demonstrated
the difference between asymptotic complexity and actual run-time: although
this linear-time operation is supposed to improve the search and thus lead to
less exponential-time SAT solving, in practice the formulas given to the SAT
solver in CAR are so easy that they are solved in fractions of a second. Thus,
the trade-off between more cores and fewer SAT calls in practice is not at all
an obvious win. We will describe several algorithmic steps that we took in order
to make this technique cost-effective. Using this combination of techniques, we
not only improved the average performance of SimpleCAR but also reached the
point that it solves more unsafe cases from the HWMCC15 + HWMCC17 bench-
mark sets than any other model checker, and furthermore it can solve several
cases that have never been solved before by any model checker, thus contributing
to the state-of-the-art.1

We continue with preliminaries in the next section. In Section 3, we recall the
CAR model checking algorithm. In Section 4, we present our new methods in
detail, including experiments, and in Section 5, we compare our results to other
tools. We conclude and suggest topics for future research in Section. 6.

1 CAR with the improvements reported here has recently won the 3rd place in bit-level
model-checking competition(safe + unsafe), and 2nd place in unsafe cases [13].
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2 Preliminaries

2.1 Boolean Transition System

A Boolean transition system Sys is a tuple (V, I, T ), where V and V ′ denote
the set of variables in the present state and the next state, respectively. The
state space of Sys is the set of possible variable assignments. I is a Boolean
formula corresponding to the set of initial states, and T is a Boolean formula
over V ∪V ′, representing the transition relation. State s2 is a successor of state s1
iff s1∧s′2 |= T, which is also denoted by (s1, s2) ∈ T . A path of length k is a finite
state sequence s1, s2, . . . , sk, where (si, si+1) ∈ T holds for (1 ≤ i ≤ k − 1). A
state t is reachable from s in k steps if there is a path of length k from s to t. Let
X ⊆ 2V be a set of states in Sys. We denote the set of successors of states in X
as R(X) = {t | (s, t) ∈ T, s ∈ X}. Conversely, we define the set of predecessors
of states in X as R−1(X) = {s | (s, t) ∈ T, t ∈ X}. Recursively, we define
R0(X) = X and Ri(X) = R(Ri−1(X)) where i > 0, and the notation R−i(X) is
defined analogously. In short, Ri(X) denotes the states that are reachable from
X in i steps, and R−i(X) denotes the states that can reach X in i steps.

2.2 Safety Model Checking and Reachability Analysis

Given a transition system Sys = (V, I, T ) and a safety property P , which is a
Boolean formula over V , a model checker either proves that P holds for any state
reachable from an initial state in I or disproves P by producing a counterexample.
In the former case, we say that the system is safe, while in the latter case, it
is unsafe. A counterexample is a finite path from an initial state s to a state t
violating P , i.e., t |= ¬P , and such a state is called a bad state.

In symbolic model checking, safety checking is reduced to symbolic reacha-
bility analysis. Reachability analysis can be performed in a forward or backward
search. Forward search starts from initial states I and searches for reachable
states of I by computing Ri(X) with increasing values of i, while backward
search begins with states in ¬P and computes R−i(X) with increasing values of
i to search for states reaching I. Table 1 gives the corresponding formal defini-
tions.

Table 1: Standard Reachability Analysis

Forward Backward

Base F0 = I B0 = ¬P

Induction Fi+1 = R(Fi) Bi+1 = R−1(Bi)

Safe Check Fi+1 ⊆
⋃

0≤j≤i Fj Bi+1 ⊆
⋃

0≤j≤i Bj

Unsafe Check Fi ∩ ¬P ̸= ∅ Bi ∩ I ̸= ∅
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For forward search, Fi denotes the set of states that are reachable from I
within i steps, which is computed by iteratively applying R. At each iteration,
we first compute a new Fi and then perform safe and unsafe checking. If the
condition in the safe/unsafe checking is satisfied, the search process terminates.
Intuitively, if the unsafe checking passes, then some bad state is reachable, and if
the safe checking passes, then all the reachable states from I have been checked,
and none of them can reach a bad state. For backward search, the set Bi is the
set of states that can reach ¬P in i steps, and the search procedure is analogous
to the forward one.

2.3 SAT Solving and Unsatisfiable Cores

In propositional logic, a literal is an atomic variable or its negation. A cube is a
conjunction of literals, and a clause is a disjunction of literals. The negation of a
clause is a cube, and vice versa. A formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses. For simplicity, we also treat a CNF formula ϕ as a
set of clauses. Similarly, a cube or a clause c can be treated as a set of literals
or a Boolean formula, depending on the context.

We say that a CNF formula ϕ is satisfiable if there exists an assignment
of each Boolean variable in ϕ such that ϕ is true; otherwise, ϕ is unsatisfiable.
Generally, it is an NP-complete problem to decide whether a given CNF formula
is satisfiable. A SAT solver can decide whether a CNF formula ϕ is satisfiable
or not. It emits a Boolean assignment to the variables, called a model of ϕ, if
ϕ is satisfiable. Otherwise, some SAT solvers can emit an unsatisfiable core, as
explained in the introduction, based on a subset of the assumptions.

3 Complementary Approximate Reachability (CAR)

CAR is a relatively new SAT-based safety model checking approach that is essen-
tially a reachability-analysis algorithm inspired by PDR [17]. Unlike BMC [4,6],
CAR is complete, i.e., it can also prove correctness. CAR maintains two se-
quences of state sets (also called ‘frames’) that are defined as follows:

Definition 1 (Approximating State Sequences). Given a transition system
Sys = (V, I, T ) and a safety property P , the over-approximating state sequence
O ≡ O0, O1, . . . , Oi (i ≥ 0), and the under-approximating state sequence U ≡
U0, U1, . . . , Uj (j ≥ 0) are finite sequences of state sets such that, for k ≥ 0:

O-sequence U -sequence

Base: O0 = ¬P U0 = I

Induction: Ok+1 ⊇ R−1(Ok) Uk+1 ⊆ R(Uk)

Constraint: Ok ∩ I = ∅ −−

These sequences determine the termination of CAR as follows:
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– Return ‘Unsafe’ if ∃i · Ui ∩ ¬P ̸= ∅.
– Return ‘Safe’ if ∃i ≥ 1 · (

⋃i
j=0 Oj) ⊇ Oi+1.

Notably, CAR can also use the over- and under- approximating sequences
reversed, i.e., use the over-approximating sequence in the forward direction,
from the initial state towards the negated property, while using the under-
approximating sequence from the negated property towards the initial state.
In this paper, we only consider the direction as stated in Definition 1 (this was
called ‘backward CAR’ in [16,17]).

At the high level, CAR can be considered a general version of PDR, as the O-
sequence in CAR is not necessarily monotone, while that in PDR is. As a result,
CAR can have a more flexible methodology for the state generalization, i.e.,
directly using the UC from the SAT solver rather than computing the relative
inductive clauses. However, CAR needs to invoke additional SAT queries to find
the invariant (checking safety), while PDR can do it with a simple syntactic
check.

Algorithm 1 describes CAR. It progresses by widening the U sets and nar-
rowing the O sets, which are initialized at Line 2 to I and ¬P , respectively. The
algorithm maintains a stack of pairs ⟨state, level⟩ where level refers to an index
of an O frame. Otmp, initialized to ¬I in Line 4 and later updated, represents
the next frame to be created.

Initially, a state from the U -sequence is heuristically picked (Line 5) – by
default from the end to the beginning – and pushed to the stack. In each iteration
of the internal loop, CAR checks whether the state at the top of the stack, call
it s, can transit to the Ol frame. This involves two steps. It first conducts a
’blockedIn’ check (Line 11, to be discussed later) to check if the state is blocked
at level l + 1, i.e., whether Ol+1 → ¬s. If yes, backtrack is initiated; otherwise,
CAR checks if SAT (s, T ∧Ol

′) in Line 18, i.e., whether T ∧Ol
′ is satisfiable while

taking the literals in s as assumptions (recall from Sec. 2.1 that prime variables,
such as O′

l here, denote next-state variables).
If yes, a new state t ∈ Ol is extracted from the model, to update the U -

sequence (Line 19-21), effectively widening it; Alternatively, the negation of the
unsatisfiable core is used to constrain the O frame of s (level l + 1), effectively
narrowing it (Lines 23-30), and pushing s back to the stack if possible.

CAR returns ‘Unsafe’ as soon as the working level l is less than 0, which
indicates that a bad state in ¬P is reached (line 10). Otherwise, CAR returns
‘Safe’ if the O sequence includes all the states that can reach ¬P – this is checked
via the condition in Line 31, which was also mentioned as part of Definition 1.

Let us go back to ‘blockedIn(s, l)’. It can be thought of as an optimization
– a linear-time test that saves calls to a SAT solver in line 18. It returns true
if there exists a clause cl ∈ Ol that subsumes (and hence implies) ¬s. Although
each pair (s, l) should adhere to the condition that s is not blocked at level l+1
when the pair is pushed into the stack (line 21), the successors of s might later
backtrack to a higher level, giving rise to a UC that blocks s. In the algorithm,
if s is already blocked in Ol+1, then according to the definition, it cannot reach
Ol within one step, and there is no need for the SAT call in line 18.
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Algorithm 1: Complementary Approximate Reachability (CAR).

Input: A transition system Sys = (V, I, T ) and a safety property P
Output: ‘Safe’ or (‘Unsafe’ + a counterexample)

1 if SAT (I ∧ ¬P ) then return ‘Unsafe’
2 U0 := I, O0 := ¬P
3 while true do
4 Otmp := ¬I
5 while state := pickState(U) is successful do ▷ Heuristic choice
6 stack := ∅
7 stack.push(state, |O| − 1)
8 while |stack| ≠ 0 do
9 (s, l) := stack.top() ▷ Assume s ∈ Uj

10 if l < 0 then return ‘Unsafe’
11 if blockedIn(s,Ol+1) then ▷ true if Ol+1 → ¬s
12 stack.pop() ▷ note line 9
13 while l + 1 < |O| and blockedIn(s,Ol+1) do
14 l := l + 1 ▷ Backtrack to a higher level

15 if l + 1 < |O| then
16 stack.push(s, l + 1)

17 continue

18 if SAT (s, T ∧O′
l) then

19 t := GetModel()
20 Uj+1 := Uj+1 ∨ t ▷ Widening U . j is s’s frame – see Line 9
21 stack.push(t, l − 1)

22 else
23 stack.pop()
24 uc := getUC()
25 if l + 1 < |O| then
26 Ol+1 := Ol+1 ∧ (¬uc)
27 l′ = minNotBlockedIn(s)
28 stack.push(s, l′ − 1)

29 else
30 Otmp := Otmp ∧ (¬uc)

31 if ∃i ≥ 1 s.t. (
⋃

0≤j≤i Oj) ⊇ Oi+1 then return ‘Safe’

32 Add a new state-set to O and initialize it to Otmp

4 Adding multiple unsatisfiable cores

4.1 Theory and initial results

Recall that in CAR, the O frames are narrowed (i.e., become less overapproxi-
mating) by constraining them with negations of UCs — see line 30 in Alg. 1.
We now suggest a method by which each time the formula in line 18 turns out
to be unsatisfiable, more than one UC is computed and added. Constraining
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further the frames in this way accelerates the narrowing of the O-frames and
hence blocks more spurious states from being explored. It is guaranteed, by con-
struction, that each new core is not implied by previous (negations of) UCs in
the frame2, as stated in the following theorem.

Theorem 1 (Additional UCs are not redundant). Let (s, l) be a pair
checked in line 9 of Alg. 1. If s is not blocked in Ol+1 and SAT (s, T ∧ O′

l)
returns ‘unsatisfiable’, the UC retrieved from the SAT call, call it uc, satisfies
Ol+1 ̸→ ¬uc.

Proof. uc is a core of SAT (s, T ∧O′
l), hence uc ⊆ s, or, equivalently, ¬uc → ¬s.

Hence if Ol+1 → ¬uc, then Ol+1 → ¬s, which implies that s has already been
blocked in Ol+1 before the SAT call. A contradiction. ⊓⊔

We observe that once the SAT solver proved that the formula is unsatisfiable, it
is a linear-time operation to find multiple UCs simply by rerunning the solver
incrementally, with a different assumptions order. To be specific, since all the
learned clauses remain from the initial run, it is guaranteed that the solver will
detect unsatisfiability solely based on deciding the assumptions (or a subset
thereof) and applying BCP. More formally:

Theorem 2 (The complexity of computing additional UCs is linear).
Let A be the assumptions (a vector of literals) and f be a formula. In a modern
CDCL SAT Solver, if SAT (f,A) is unsatisfiable, then a subsequent incremental
call SAT (f, reorder(A)), where reorder is some reordering of the assumptions,
takes time which is linear in the number of f literals.

Proof. In a Minisat-like SAT solver, the assumptions are selected as decision
literals in the order in which the assumptions vector is given to the solver,
followed each time by BCP. A formula is declared unsat when a conflict occurs
in some decision level d such that d ≤ |A|. Let uc ⊆ A denote the UC of the
original SAT call. In consequent incremental runs of the solver (recall that the
checked formula includes all the learned clauses from the previous run that were
still present, i.e., not deleted, at the time that the conflict was detected) with
any order of assumptions, a conflict must occur at or before the point in which
this subset is ‘covered’, hence before any real decision is made. Therefore, only
decisions and BCP are applied, which is linear in the number of literals. ⊓⊔

Theorem 2 gives us hope that finding multiple UCs in a single run will be
cost-effective. We call this method mUC, where m stands for multiple. Generally,
we do not need to commit to a constant number of UCs, as we can heuristically
decide how many to add. For exposition purposes, however, we will denote by
mUC (n) a process of adding exactly n cores. mUC (1) is, therefore, the baseline
of adding a single core.

2 However, it is possible that the additional cores are subsumed by previous ones in
the same formula. Indeed, we experimented with applying a subsumption test, but
it turned out not to be cost-effective.
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There is a large space for tuning this approach, including a decision on which
order of assumptions to use in order to produce more UCs, how many UCs to
add, whether always to apply it or just selectively, and so forth. We drove this
tuning process with the 337 unsafe benchmarks 3 in the Aiger [5] format from
the single safety property track of the 2015 and 2017 Hardware Model Check-
ing Competition (HWMCC) 4 All the counterexamples found were successfully
verified with the third-party tool aigsim that comes with the Aiger package.

Our initial experiments with variants of this approach demonstrated the
difference between asymptotic complexity and actual run-time. Although this
linear-time operation is supposed to improve the search and thus lead to fewer
exponential-time SAT calls, in practice, the formulas given to the SAT solver in
CAR are so easy that they are solved in fractions of a second. Thus, it is not
obvious at all that more cores and fewer SAT calls in practice improve the total
running time.

To test the actual difference in running time, we changed the algorithm. Each
time the result of the SAT call was ‘unsat’, we ran it once more, incrementally,
with the order of the literals reversed. This is not only cheap to compute, but
also guarantees that the literals that have been picked in the previous run are
in the back, which promotes diversity of the cores. We shall later show that this
is a good choice empirically. Recall that this second run is linear according to
Theorem 2, while the first run is worst-case exponential. Across all benchmarks,
the ratio between the run times of the second and first runs turned out to be
0.65. In other words, if we always apply it, then each time the result of the SAT
call is ‘unsat’, we pay a penalty of 65% in running time, with the hope that this
will improve the search and consequently reduce the overall number of SAT calls
and the total run-time. There are other overheads associated with this method:
the frames can become bigger and hence slow down the SAT solver, and the
check in line 11, which has a complexity linear in the size of the frame, can also
be negatively affected. All these factors show that without careful tuning, this
technique is not likely to succeed.

We implemented our suggested algorithms on top of SimpleCAR [16, 23],
which is an implementation of the CAR algorithm. The following table shows
the effect of applying this technique on the total running time and the total
number of SAT calls (in line 18). The timeout here and in the rest of the article
was set to one hour.

3 Results of these benchmarks are either known to be unsafe or remain unknown.
Those that are already proven to be safe in the competition are excluded, as we will
explain in Sec. 5.

4 The focus on these relatively old benchmarks stems from the fact that since HWMCC
2019, the official format shifted to BTOR, which operates at the word level. Although
some bit-level benchmarks were provided, they relied on a newer version of the
Aiger format (> 1.9). However, not all the model checkers that we compared against
support this format, and some emit wrong results. Consequently, we excluded those
benchmarks and focused on HWMCC 2015 and HWMCC 2017 instead. We note
that the most recent bit-level model checking article that was published to the best
of our knowledge [26] also uses the 2015 and 2017 benchmarks.
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Table 2: The effect of adding more UCs using different ordering of assumptions.
The subscript in mUCr indicates that the assumptions orderings for generating
the additional cores were selected randomly.

mUC (1) mUC (2) mUCr(2) mUCr(3) mUCr(4) mUCr(5)

Solved 146 150 146 142 142 139

Avg. # of (first-only) SAT calls 137k 103k 146k 120k 107k 97k

Avg. total time of 1st SAT calls 1171.2s 944.0s 1138.7s 1014.0s 879.7s 827.9s

Avg. total time of subsequent SAT calls 0.0s 367.3s 741.4s 916.7s 1041.2s 1145.6s

Avg. UC redundant rate 0 4.53% 7.09% 8.97% 10.70% 11.15%

As we can see from Tab. 2, the number of cases solved by mUC (2) increased,
which is a success. Furthermore, the number of (first) SAT calls and their accu-
mulated run-time indeed drops, which implies that we are able to narrow down
the over-approximation by adding more UCs, as expected. Note that the total
SAT run-time (944+367.3 sec.) of mUC (2) is larger than that of the baseline
mUC (1) – 1171.2 sec. On the other hand, the table shows that adding cores
based on random assumptions ordering does not help. We will therefore continue
from here on with mUC (2) based on the reverse order.

The results in the table may be misleading due to the time-out cases. For
example, if a run with a single UC terminates on time and manages to make
many fast SAT calls, while a run with two UCs times out and, due to overhead,
completes fewer SAT calls before timing out, the table would count more calls
under the single UC column. This could create the false impression that the
single UC approach is less efficient than the two UCs approach. To address this,
we also calculated the number of initial SAT calls after excluding 173 cases where
at least one engine timed out:

mUC (1) mUC (2)

Avg. # of (first-only) SAT calls 2960 1747

We can see, then, that for this set of instances, the number of (first) SAT
calls also drops. Notably this filtered view can also distort the full story, exactly
because it ignores the cases in which one terminates and the other does not.

When comparing the overall runtime, the individual results of each bench-
mark instance in Fig. 1 show that most of the plots are above the diagonal,
indicating a positive impact of adding the second UC.

4.2 Re-tuning the solver for multiple UCs

Selective application. To try to improve the method further, we experimented
with various heuristics that control when to apply it. Specifically, in which frames
to apply it: the high or low x% of the frames. For example, if we choose 30%
from the low-index frames, it means that if the current number of O frames is
n, then for frame i, i ≤ 0.3n, we add multiple cores. Tab. 3 shows our results
with different such values.
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Fig. 1: Per-instance comparison of total time where X-axis and Y-axis represents
mUC(2) and mUC(1) respectively.

Table 3: Different options to add multiple UCs

mUC (1) mUC (2)
Low-* High-*

50% 33% 25% 20% 50% 33% 25% 20%

Solved 146 150 151 152 150 149 149 150 147 144

Hence, by adding a UC only for the 33% low-index frames we are able to
solve two more cases.

Detecting blocked states efficiently. Next, through profiling we learned
that a large part of the run-time is spent in line 11 of Algorithm 1, which tests
whether the state s is blocked by the UCs in the frame Ol+1. Recall that this
step is an optimization that saves SAT calls in line 18. The time spent in this line
is proportional (i.e., linear) to the size of the frame, and hence adding more UCs
to it potentially increases the overhead of this test. We measured the portion
of running time dedicated to this process in the time-out cases. On average, it
was 11% (407 out of 3600 sec). In 14% of the cases it was more than 30% of
the running time. Alg. 2 shows the implementation of ‘blockedIn’. It iterates the
clauses in the corresponding frame and checks if one of them blocks the state,
which amounts to a subsumption test.
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Algorithm 2: The Basic Implementation of ‘blockedIn’

Input: A state s, an O frame Ol

Output: ‘BLOCKED’ or ‘NOT BLOCKED’
1 for each cl ∈ Ol do
2 if cl → ¬s then
3 return ‘BLOCKED’

4 return ‘NOT BLOCKED’

Going over all clauses in sequence might not be the best strategy. We exper-
imented with using BCP instead, which amounts to calling a SAT solver over
the formula Ol and the assumptions s. Since s spans the entire set of variables,
this SAT call is determined without real decisions (i.e., only decisions of the as-
sumptions themselves) and is hence linear. Furthermore, we maintain a separate
solver object for each frame, and hence we activate this step incrementally, i.e.,
we do not need to read the frame into the SAT solver each time.

While Alg. 2 can be thought of as clause-driven DFS (checking each clause to
completion each time), the BCP method can be thought of as literal-driven BFS.
The 2-watch literal scheme [19] in modern SAT solvers makes it highly efficient,
as most clauses are not even visited, so we expect this route to be faster, at least
when the frames are large. Our experiments confirmed this hypothesis, which
led us to a hybrid approach based on a threshold: we activate the BCP method
only when the number of clauses in the frame is larger than 10k.

With this threshold, our results improved by three solved cases, to 155 — see
Tab. 4. Two things to note in this table: first, the hybrid approach of invoking
Alg. 2 for frames with 10k clauses or less, and BCP otherwise, improves the re-
sults regardless of the number of added UCs; Second, the time per call decreased
by a factor of 2 (from 0.53 to 0.26) with the latest configuration, owing to this
method.

Table 4: Results with different ‘blockedIn’ approaches. The ‘Basic’ rows refer to
Alg. 2.

UC method blockedIn method Avg time per call (ms) Solved

Basic 0.56 146
mUC (1) BCP 0.81 145

Hybrid (10k) 0.4 148

Basic 0.96 150
mUC (2) BCP 0.85 150

Hybrid (10k) 0.52 153

Basic 0.53 152
mUC (2) BCP 0.58 153
(Low 33%) Hybrid (10k) 0.26 155
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Restarts. Finally, we tested whether restarting periodically with different mUC
strategies can help. Each such strategy likely leads to a different search. At each
restart, we preserve some data from the previous run. It is important to note that
we cannot maintain arbitrary portions of the frames, because it may break the
invariants listed in Definition 1. For example, if we remove a clause from Oko

,
then we can no longer guarantee that the induction condition is maintained,
namely that Ok+1 ⊇ R−1(Ok). If we arbitrarily remove a state from a U frame,
say Uk, we cannot guarantee that the invariant Uk+1 ⊆ R(Uk) is maintained,
although this invariant is not necessary for the proof of correctness [17].

The only correct and computationally easy way that we found to remove
data from the O sequence is to decide on an index ko such that O0, . . . , Oko are
maintained whereas O frames with a larger index are removed. One exception
that can be made to this rule is with the border frame, Oko

, that can also be
partially removed without violating the invariant, because after resetting Oko+1

it is equal to true and trivially maintains the invariant. Similarly, for the U
sequence, we can decide on an index ku, maintain U0, . . . , Uku

and remove frames
with an index larger than ku.

We experimented with changing five dimensions:

1. The values of ko, ku, namely the border frames that define which data to
maintain between restarts,

2. the portion of the border frames to maintain,
3. the clauses to be maintained in the border frames,
4. the selective application strategy (see the beginning of this subsection)
5. the time to restart.

The best configuration that we found is with ko = 1, ku = 0. As for the second
question, we settled on maintaining at the nth restart n

n+1 of Oko . Hence, we
begin with half of Oko , then two-thirds, and so on, namely we increase it from
one restart to the next. Note that Oko

likely changes each time. As for the third
question, we sort Oko

’s clauses and take the shortest ones. As for the fourth
question, we begin with full activation and then begin to only activate at the
low indices, where the activation threshold is updated at restart n, for n > 1,
according to

threshold[n] =
threshold[n− 1]

threshold[n− 1] + 1
(1)

Hence the activation ratio progresses as follows: 1, 1/2, 1/3, 1/4, . . .. Finally, as
for the fifth question, we experimented with different time constants.

Table 5: The number of solved cases by mUC (2) with different restart strategies
and restarting periods.

Restart Strategy t=180s t=300s t=450s t=600s t=900s t=1200s

ko = 0, ku = 0 155 157 160 156 155 160
ko = 1, ku = 0 154 157 157 159 161 158
ko = 1, ku = 0, forget parts of O1 156 164 161 157 158 160
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Tab. 5 summarizes some of our experiments with these dimensions. We can
now solve more than 160 cases with many different configurations, peaking at
164 cases.

5 A comparison to other model checkers

Finally, we compared mUC to the leading model checkers in the public domain:
abc-bmc [1], abc-pdr [1], nuxmv-igood [21, 26], avy [2, 24], navy [20, 25],
BAC [27] and our baseline tool simpleCAR [17,23]. Details about the configu-
ration of these tools in our experiments appear in the appendix. The benchmark
set is the same as described in Sec. 4.1.

We ran the experiments on a cluster of Linux servers, each equipped with
an Intel Xeon Gold 6132 14-core processor at 2.6 GHz and 96 GB RAM. The
version of the operating system is Red Hat 4.8.5-16. For each running instance,
the number of CPU cores was limited to 1, the memory was limited to 8 GB,
and the time to 1 hour.

Tab. 6 shows a summary of this comparison. The last column refers to mUC
in its best configuration as described in the previous section. Fig. 2 and Tab. 7
give more details about the running time.

Table 6: The number of unsafe instances solved with a 1-hour timeout, by dif-
ferent model checkers.

abc-bmc abc-pdr nuxmv-igood avy navy BAC simpleCAR mUC

Solved 159 109 137 128 138 160 146 164
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Table 7: Comparing mUC to other model checkers in terms of the percentage of
benchmarks that they each solve at least 5 seconds faster than the other.

abc-bmc abc-pdr nuxmv-igood avy navy bac simplecar

mUC is faster 34.0% 63.4% 71.3% 58.2% 48.2% 61.2% 35.5%
mUC is slower 43.3% 9.2% 13.3% 13.5% 20.6% 12.7% 14.0%

During our experiments with the various configurations of mUC, we were able
to solve 7 benchmarks that were in an unknown status so far, that no current
version of the tools in Tab. 6 can solve within the time limit, thus this can be seen
as a contribution to the state-of-the-art. The depths of the counterexamples that
we found, compared to the maximal depths that were proven safe by the virtual
best solver of the other tools, appear in Tab. 8. We note that in some of the
cases, the configuration at the left column is only one of several configurations
that solved the benchmark.

Table 8: Benchmarks that only mUC can solve, albeit under different configura-
tions (in some cases by multiple mUC configurations). The third column repre-
sents the maximum depth that other tools reached together (vbs), i.e., were able
to prove that there is no counterexample up to that depth. The right column is
the length of the counterexample that mUC found.

mUC (2) configuration Benchmark Bound Counterexample length by mUC

low-20% oski15a01b76s 14 143
low-25% oski15a01b62s 16 95
low-33% oski15a01b70s 18 125
low-33% 6s329rb20 47 1417
low-50% intel012 100 1962
high-33% 6s329rb19 45 1295
full oski15a01b36s 14 262

For completeness, we also report the results for safe cases in Tab. 9, despite
the fact that CAR in general is not competitive for safety checking. The results
show that our technique also improves the results for those cases — in particular
from 166 to 177 solved instances.

To summarize, our experiments show that our implementation of these tech-
niques, on top of SimpleCAR, not only improves its performance, but also
solves more (unsafe) cases than any other model-checker in the public domain,
and solves instances that no other model checker can.
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Table 9: The number of safe instances solved (out of the 749 instances of
HWMCC15-17) with a 1-hour timeout, by different model checkers.

abc-bmc abc-pdr nuxmv-igood avy navy BAC simpleCAR mUC

Solved - 294 304 296 310 - 166 177

6 Conclusion

SAT-based model checkers like CAR and PDR rely heavily on unsatisfiable cores
to generalize from failed attempts to progress from a given state. While previous
work [10] focused on improving the core by controlling the literal order, here we
suggested to add several cores (although in practice we found that just adding
one more core, and even that only selectively, is best). Our initial core was already
the best one (as a single core!) according to [10], hence our technique improves it.
We discussed the many dimensions of this technique and presented our (limited)
experience with tuning them, although there is plenty left for future research.
For example, what are good literal orders for achieving high-quality cores in the
context of adding multiple cores (we simply took the order suggested in [10]
and its reversal for the 2nd core)? What is the best set of U frames and partial
frames to leave when restarting? Can this method also improve PDR?

We showed that despite the fact that additional cores can be computed in
linear time, and it indeed saves normal, worst-case exponential SAT runs, owing
to the fact that the latter process is fed with relatively easy formulas, it is not
at all trivial that the saving will be larger than the overhead of computing more
cores and the overhead associated with having larger frames. We suggested a
method for improving the linear-time test called ‘blockedIn’ (line 11 of Alg. 32)
which initially was made slower by the increased frames, and also showed that
restarting the solver with different strategies improves the run time.

At the bottom line, we were able to improve CAR from 146 to 164 solved
cases. The next in line is bac, which is also based on CAR, and after that
the bounded model checker abc-bmc, which can only solve 160 and 159 cases,
respectively. Furthermore, we improved the state-of-the-art in the sense that we
solved 7 cases that no other solver can. Such an improvement is significant in
light of the many years of research on these tools.

All the artifacts described in this article are available at [9].
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A The configurations of the competing model checkers

The table below gives more details about the configuration of each of the tools.
Unless otherwise stated, these flags represent the default. In the case of avy and
navy the flags were copied from the corresponding scripts in their respective
repository.

Tool Configuration Flags

abc-bmc -c “bmc2”
abc-pdr -c “pdr”
simpleCAR -b -e
bac -b -e -1500

–reset-cover=1 -a –kstep=1 –shallow-push=1
avy –tr0=1 –min-suffix=1 –glucose –glucose-inc-mode=0

–min-core=1 –glucose itp=1 –stick-error=1 –sat-simp=1
–reset-cover=1 –opt-bmc –kstep=1 –shallow-push=1

navy –min-suffix=1 –glucose –glucose-inc-mode=0
–sat-simp=1 –glucose itp=1

nuxmv-igood -a ic3 -s cadical -W -m 1 -u 4 -I 1 -D 0 -g 1
-X 0 -c 0 -p 1 -d 2 -G 1 -P 1 -A 100 -O 3

mUC –vb –inter 1 –rotate –raw –imp 5 –rem 1
–convMode 1 –convParam 0 –restart 300
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