
4032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 10, OCTOBER 2025

Revisiting Assumptions Ordering in CAR-Based
Model Checking

Yibo Dong , Yu Chen, Jianwen Li , Geguang Pu , and Ofer Strichman

Abstract—Model checking is an automatic formal verification
technique that is widely used in hardware verification. The
state-of-the-art complete model-checking techniques, based on
IC3/PDR and its general variant CAR, are based on computing
symbolically sets of under- and over-approximating state sets
(called “frames”) with multiple calls to a SAT solver. The
performance of those techniques is sensitive to the order of
the assumptions with which the SAT solver is invoked, because
it affects the unsatisfiable cores that it emits if the formula
is unsatisfiable—which the solver emits when the formula is
unsatisfiable—that crucially affect the search process. This obser-
vation was previously published (Dureja et al., 2020), where two
partial assumption ordering strategies, intersection and rotation
were suggested (partial in the sense that they determine the
order of only a subset of the literals). In this article we extend
and improve these strategies based on an analysis of the reason
for their effectiveness. We prove that intersection is effective
because of what we call locality of the cores, and our improved
strategy is based on this observation. We conclude our paper
with an extensive empirical evaluation of the various ordering
techniques. One of our strategies, Hybrid-CAR, which switches
between strategies at runtime, not only outperforms other, fixed
ordering strategies, but also outperforms other state-of-the-art
bug-finding algorithms, such as ABC-BMC.

Index Terms—Complementary approximate reachability
(CAR), hardware verification, model checking.

I. INTRODUCTION

MODEL checking is a widely used formal verifica-
tion technique in hardware design, where it ensures

that a system model satisfies given safety properties. For
safety properties, the model checking problem reduces to
reachability analysis [7], and various techniques have been
developed to address this, including Bounded Model Checking
(BMC) [1], Property Directed Reachability (PDR) [3],
and Complementary Approximate Reachability (CAR) [15].
Among these methods, CAR has shown great potential
by solving instances that BMC and PDR cannot, but its

Received 28 May 2024; revised 30 October 2024 and 1 February 2025;
accepted 7 March 2025. Date of publication 19 March 2025; date of current
version 22 September 2025. This work was supported by NSFC under Grant
U21B2015 and Grant 62372178. This article was recommended by Associate
Editor E. Testa. (Corresponding authors: Jianwen Li; Geguang Pu.)

Yibo Dong, Jianwen Li, and Geguang Pu are with the Software Engineering
Institute, East China Normal University, Shanghai 200241, China (e-mail:
prodongf@gmail.com; jwli@sei.ecnu.edu.cn; ggpu@sei.ecnu.edu.cn).

Yu Chen is with the School of Computer and Information Engineering,
Chuzhou University, Chuzhou 239000, China (e-mail: chenyu@chzu.edu.cn).

Ofer Strichman is with the Faculty of Data and Decision Sciences,
Technion, Haifa 3200003, Israel (e-mail: ofers@technion.ac.il).

Digital Object Identifier 10.1109/TCAD.2025.3551658

performance remains sensitive to the way assumption literals
are ordered when passed to the SAT solver. This sensitivity
arises because the order in which literals are processed affects
the generation of unsatisfiable cores (UCs), which are essential
for driving the state-space exploration. This article focuses
on improving the quality of those UCs, which accelerates the
narrowing process of the O-frames.1

To improve UC quality in CAR, it is essential to understand
how SAT solvers generate UCs. In each SAT call in CAR,
a formula of the form

∧
l∈A l ∧ φ is processed, where A

is a sequence of assumption literals and φ is a Boolean
formula in Conjunctive Normal Form (CNF). Modern CDCL-
based SAT solvers handle A by positioning its literals in
order as the initial decisions, and perform as usual Boolean
Constraint Propagation (BCP). A contradiction emerging from
those decisions indicate unsatisfiability. In that case the solver
outputs a UC, which is a subset of A that is sufficient to render
φ unsatisfiable.

The order of literals in A impacts the resulting UC
and hence the overall performance of CAR. Previous work
developed assumption-ordering strategies that improve the
quality of UCs. For example, IC3REF [13] sorts literals by
their frequency, while SIMPLECAR [14], a CAR implemen-
tation, uses two strategies: 1) Intersection, which prioritizes
literals in both the current state and the previous UC, and
2) Rotation, which prioritizes literals found in previously failed
states [10]. These strategies empirically enhance bug-finding
performance. Indeed, SIMPLECAR is one of the baseline
approaches against which we evaluate our improvements.
Additionally, we compare our contributions to the leading
BMC implementations and recent optimizations of CAR [19].

Our contributions are as follows.
1) We revisit one of the two heuristics proposed in [10],

called Intersection, and suggest an explanation for its
effectiveness. Briefly, we show that it leads to finding
proofs of unsatisfiability faster because of what we call
the locality of the cores. Based on this observation, we
propose an extension of this technique that improves
locality, and decides on the order of more literals
comparing to the original version of Intersection. We
also show how it affects a combination of locality with
another strategy from [10] called Rotation.

2) We observe that the last added literal to a UC, which we
call the conflict literal, is necessarily part of a minimal

1CAR with the improvements reported here has recently won the 3rd place
in the bit-level model-checking competition [12].

1937-4151 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0004-0508-6146
https://orcid.org/0000-0001-9286-8285
https://orcid.org/0000-0001-9750-8334
https://orcid.org/0000-0001-9169-3751


DONG et al.: REVISITING ASSUMPTIONS ORDERING IN CAR-BASED MODEL CHECKING 4033

core. We empirically show that prioritizing this literal
reduces the time to find proofs.

3) We introduce Hybrid-CAR, a dynamic strategy that
alternates between literal-ordering strategies at runtime,
achieving superior performance over static approaches
and surpassing existing bug-finding methods, including
the SOTA BMC implementation ABC-BMC [4].

4) We provide an extensive empirical study of the influence
of assumption ordering on the UC, thereby empirically
demonstrating the significance of literal ordering in
CAR-based model checking.

Owing to space considerations, we cannot include here
detailed preliminaries about the PDR and CAR model-
checking algorithms, and have to assume that the reader is
familiar with them. These, as well as additional analysis of
the experiments, appear in the long version of this article [9].

II. LITERAL REORDERING: PRIOR WORK AND INSIGHTS

We start with a high-level description of the CAR algorithm,
the foundation of our work. CAR maintains two sequences
of state sets: 1) an over-approximating sequence (O) and 2)
an under-approximating sequence (U). The sequences start
with O0 = ¬P (the negation of the safety property) and
U0 = I (the initial states). CAR updates these sequences by
checking the satisfiability of transitions for each state in U. If
a transition is satisfiable, then the target state is added to U
to widen it; Otherwise, the UC is added to O, which narrows
it. The process terminates when a state in U intersects with
¬P (returning “Unsafe”) or the union of O subsumes the next
frame (returning “Safe”).

As mentioned in the introduction, modern CDCL-based
SAT solvers take as input, in addition to the formula φ,
a vector of literals A, called the assumptions, and checks
whether

∧
l∈A l ∧φ is satisfiable. The SAT solver chooses the

assumption literals to be the first decisions in the order that
they are given. As usual, after each such decision, it invokes
BCP. Suppose there is already a conflict in the first |A| (A ⊆
A) decision levels (recall that this can happen after learning
and backtracking to those levels). In that case, the search
is terminated—the formula is declared unsatisfiable under A
(with further analysis the solver can detect a subset of A that
is responsible for the conflict, but this is immaterial to the
discussion). This implies that assumption literals after |A| in
the predefined order cannot be part of the generated UC. As a
result, prior assumption literals have a higher probability of
appearing in the UC. That is why literal ordering matters.

The Intersection Strategy and Locality of Cores: The
Intersection strategy [10] places the intersection with the last
UC in the beginning of the assumptions sequence. The literals
from this UC are placed first in the order, which makes them
more likely to appear in the new core, hence make consecutive
cores similar. This is what we call “the locality of the cores”.

The term locality is used, among other places, in describing
decision heuristics in SAT solving. All CDCL solvers use
decision heuristics that prioritize variables that participated in
recent conflicts, hence they focus the search. Although this
is not directly related to the current paper, our hypothesis

is that this decision strategy is effective because it generates
proofs faster: similar clauses are necessary for constructing a
resolution proof (for satisfiable cases, learning has little effect
to begin with [16]). And if there is a small proof, it is better
to focus the search and hopefully find it rather than generating
unrelated clauses.

Our argument is that finding cores in CAR that are similar
should have a similar effect: it makes proofs involving the
O frames easier and hence faster. In other words, every
time that we check whether a state can reach an O frame,
if that frame contains apriori many of the clauses that are
necessary for the proof that the state is not reachable, the proof
will converge faster. We tested this hypothesis empirically
based on benchmarks from the Hardware Model Checking
Competition (HWMCC) 2015 and 2017 [11] competitions,2

and the results appear in the following table. It confirms that
locality improves runtime for UNSAT cases and speeds up
overall state reachability proofs.

The first row shows the effect of locality on the average run
time of UNSAT cases, and the second is the average overall
time for proving that a state cannot reach an O frame. Both
show an acceleration.

The Rotation Strategy: The Rotation technique prioritizes
literals common in recent failed states. The rationale is that
it helps the solver avoid getting trapped for long in various
parts of the search space, by generating UCs that are mostly
based on those common literals. It maintains a vector of literals
common with a fixed size equal to the size of a state.

Our results, summarized in the following table, show a
reduction in the number of SAT calls with this strategy. The
basis of the evaluation is the same as before.

Combining Intersection and Rotation: When it comes to
combining the two strategies, it should be noted that the latest
UC selected in Intersection is derived from the last failed
state. This observation leads to the conclusion that the cube
generated via Intersection, called iCube, is a subset of the cube
generated via Rotation, which is called rCube. As shown in
Fig. 1, to integrate the two algorithms is merely to position
the literals produced by Intersection ahead of those generated
by Rotation while eliminating duplicate literals in the latter.

The results in the following table show that indeed the
combination finds proofs faster on average.

2The experiment setup in this section is the same as that in Section IV.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 



4034 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 10, OCTOBER 2025

Fig. 1. Illustrating example of the reordering process, where s is the incoming
state, “last uc” and “last failed state” are both from the last UNSAT query.
si, sr and si+r each represents the reordered state ŝ using only Intersection,
only Rotation and their combination, respectively.

Algorithm 1: Reordering Algorithm: CoreLocality
Input: A state s, frame level l, configuration iLimit
Output: ŝ: The reordered s

1 ŝ := ∅
2 for k:0 → iLimit do
3 Let refk = getTheLast_kth_UC(l)
4 if refk �= ∅ then
5 for each lit ∈ refk do
6 if lit ∈ s ∧ lit /∈ ŝ then
7 ŝ.pushBack(lit)
8 	 Literals added here form the iCubes

9 cVec := getCommonVector(l)
10 for each lit ∈ cVec do
11 if lit ∈ s ∧ lit /∈ ŝ then
12 ŝ.pushBack(lit)
13 	 Literals added here form the rCube

14 for each l ∈ s ∧ l /∈ ŝ do
15 ŝ.pushBack(l)

16 return ŝ

III. LITERAL ORDERING STRATEGIES: NEW APPROACHES

As discussed in the previous section, Intersection and
Rotation, either separately or combined, determine the position
of only a limited portion of the whole literal set, whereas the
position of other literals is determined by what we called the
“natural” order, i.e., arbitrary.

In this section we will show a way to increase the portion
of literals that their position is determined, utilizing more his-
torical information on the cores, and consequently improving
the overall runtime.

A. Literal Reordering With CoreLocality

Stemming from the intuition that incorporating recent UCs
beyond the most recent one could help by improving locality,
we propose a new literal ordering strategy CoreLocality,
which is outlined in Algorithm 1. By expanding the scope
of considered UCs, intersecting with each and organizing
the results chronologically (with the intersection with newer
UCs placed earlier), CoreLocality facilitates sorting a greater
number of literals, thereby refining the guidance of the search.

As shown in the algorithm, in addition to the state s
and frame level l, a new parameter iLimit is introduced to
denote the limit on the amount of UCs to utilize. The for
block at lines 2–8 computes the intersection according to the
corresponding UC, and pushes them into ŝ in order. For the if
block at lines 11–13, it is similar to Rotation.

Example 1: Fig. 2 illustrates a computational process for
the CoreLocality strategy with several different iLimit values.
The left dashed box shows the last three UCs in chronological

Fig. 2. Example of the CoreLocality strategy. UCs are in chronological order,
where “1st UC” is from the most recent UNSAT query. Local(k) denotes a
reordered state, utilizing k UCs, i.e., iLimit = k.

Fig. 3. Comparing CoreLocality and a combination of Intersection and
Rotation. Some literals (blue dots) from rCube and unsorted are prioritized.

order (1st being the most recent one), along with the last
failed state, and the current state s. Next, iCubes and rCube
are computed based on this data, similar to the calculation
in Fig. 1, as shown in the middle dashed box. Finally, in the
right dashed box, s is reordered by iCubes and rCube based
on different choices of iLimit. As is shown, by incorporating
the 2nd UC, the literal “−4” is pushed forward.

The distinction between CoreLocality and Intersection is
demonstrated in Fig. 3. It prioritizes literals that would other-
wise be relegated to the rear of rCube, or even after rCube.

Tuning CoreLocality: In the CoreLocality strategy, the
parameter iLimit, which denotes the maximum number of
utilised UCs, serves as a metric of the “local” scope, defining
the range within which a UC is considered “recent”. In other
words, given that the relevance of a UC to the current query
diminishes as it becomes more distant, setting a limit excludes
prior outdated UCs from current consideration. While increas-
ing the value of iLimit allows for the inclusion of additional
information, it also diminishes the impact of Rotation due to
the precedence of iCubes over the rCube. Furthermore, while it
is feasible to set the iLimit large enough to order all the literals,
this approach is observed to be highly inefficient because
getting one more literal reordered (a literal that appears in a
subsequent UC, but not in any previous one) often necessitates
thousands or even tens of thousands of UCs.

The optimal value of iLimit depends, of course, on the
specific problem context and constitutes a tradeoff between
literal coverage and the computational cost to achieve it.
Indeed, the results in the table below (the left value of
the “Time” column) show that the speed to find proofs of
CoreLocality depends on iLimit, but, as expected, it is not
monotonic. They also show that with these low values of
iLimit we are able to find proofs faster than the previous
methods. In practice the best iLimit value can be found based
on experiments, but there is also an option to change it during
run time, as we will explain later.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 



DONG et al.: REVISITING ASSUMPTIONS ORDERING IN CAR-BASED MODEL CHECKING 4035

B. Moving Forward the Conflict Literals

Not all literals in a UC are equal. Specifically, the last
literal added to the core, by definition, was necessary for
that proof (in other words, it is part of a minimal core). We
call it the conflict literal. During the process of getting UCs,
we give such conflict literals a higher priority by placing
them in the front of the core. For example, suppose that
iCube = (1, 2, 3) and literal 3 is the conflict literal of this
clause. Then we reorder iCube to (3, 1, 2), before we proceed
with building the assumption literal order as described earlier
(Algorithm 1) As shown in the table above (the right value
of the “Time” column), this small optimization accelerates, on
average, the process of finding proofs. From here on, when
we say CoreLocality, we mean CoreLocality together with this
optimization.

C. Hybrid-CAR: Combining Different Orderings

Empirically, the best configuration of CoreLocality varies
according to the specific problem and is hard to predict.
It is often observed that a model checking problem that
can be solved easily with one literal ordering strategy will
time-out with another. This encouraged us to research a
dynamic strategy, by which the configuration is periodically
switched.

We coupled this direction with a new restart mechanism
for CAR. Our experiments show that the U-sequence in CAR
frequently expands quickly, resulting in an increasingly longer
time to extend a new O frame. Perhaps, then, resetting the U
frames to I and the O sequence to O[0], and progressing with
a different literal ordering can converge faster. Based on this
hypothesis we implemented Hybrid-CAR, a version of CAR
in which a timer is kept in the SAT solver. Once it exceeds
a predefined value, it triggers a restart procedure: 1) clear
all the U states other than the states in the lowest level, and
2) increase the value of iLimit by one. Finally, to preserve
completeness, we give the option to increase the time limit,
each time restart is called.

IV. EXPERIMENTS

Our experiments focused on bug-finding only, and accord-
ingly we implemented our suggested algorithms on top of
SIMPLECAR [14], which is an implementation of the CAR
algorithm, in its best version for bug-finding [10]. We com-
pared ourselves to the best public BMC implementation (the
one in ABC-BMC [4]), and the best combination of CAR and
BMC in [19]. Our evaluation was based on 438 benchmarks3

in the Aiger [6] format from the single safety property track
of the 2015 and 2017 [11] HWMCC,4 which is consistent
with the benchmark set of [19]. All the counterexamples found
were successfully verified with the third-party tool aigsim
that comes with the Aiger package [2]. All the artifacts are
available in Github [8].

3Results of these benchmarks are either unknown or known to be unsafe.
4These are the last two years of HWMCC using the AIGER format. Since

2019, the official format switched to a word-level format BTOR [5].

Fig. 4. Results on different reordering strategies, in terms of the total solved
instances and PAR-2 score. “Base” refers to the combination of Intersection
and Rotation, “Local-i” (1 ≤ i ≤ 8) represents the CoreLocality strategy with
iLimit = i.

We ran the experiments on a cluster of Linux servers, each
equipped with an Intel Xeon Gold 6132 14-core processor
at 2.6 GHz and 96-GB RAM. The version of the operating
system is Red Hat 4.8.5-16. For each running instance, the
memory was limited to 8 GB and the time was limited to 1 h.

Q1. How does CoreLocality perform when compared to
the present best reordering strategy in CAR, i.e., Intersection
+ Rotation? The previous literal-ordering strategy for CAR,
namely the combination of Intersection and Rotation as pub-
lished in [10], is very close to CoreLocality when iLimit is
set to one (“Local-1”), except that CoreLocality introduces
a reordering inside the UCs (see Section III-A). Recall that
in Section II we presented empirical evidence that confirms
independently of [10] that these two strategies improve the
empirical results.

As is shown in Fig. 4, the performance of CoreLocality
with 1 < iLimit ≤ 8 outperforms that of the base strategy
on both the number and time of solved cases, peaking at
iLimit = 7. Increasing the number of solved cases, even by a
few instances, is important in light of the decades of research
and development of model checkers.

The Par-2 score calculates average time consumption while
doubling the time for instances that timed out. CoreLocality
with iLimit > 1 consistently consumes less time than the Base
strategy. It is also apparent that there is a correlation between
the number of solved instances and the total time consumption.
A detailed pairwise comparison between the peak and Base is
shown below on the right.

Overall, CoreLocality outperforms the Base strategy on both
the number and time of solved cases. Notably, the performance
of CoreLocality with different configurations is not correlated
to the value of iLimit. This is consistent with our discussion

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 



4036 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 10, OCTOBER 2025

Fig. 5. Comparison of run-time performance among different model checkers.
VBS represents the virtual best, i.e., parallel running all and taking the best.

Fig. 6. Pairwise Comparison of Hybrid-CAR and competitors. Timeout
instances in either are marked in red.

in Section III-A, that increasing the limit does not have a
monotonic effect.

Q2: How does Hybrid-CAR perform when compared to
the state-of-the-art bug-finding algorithms? We compared
Hybrid-CAR to the original SIMPLECAR, BAC-1500 (the
best solution shown in [19]), and ABC-BMC on bug
finding.5

It turns out that Hybrid-CAR performs better than the
competitors. With a 1-hour timeout, the best version of
Hybrid-CAR, in which the restart is invoked every 6 min,
solves 166 cases in total, which is seven more than that
solved by ABC-BMC, and 20 more than that solved by the
original SIMPLECAR. With a 6-h timeout (shown in the long
version [9] of this article), this version of Hybrid-CAR solves
169 cases, which is 20 more than the original SIMPLECAR,
and outperforms the competition. Furthermore, Hybrid-CAR
solves more instances in just one hour (166) than that solved
by ABC-BMC in 6 h (165).

Fig. 5 includes the comparison among the best version of
Hybrid-CAR and ABC-BMC, as well as the combinations of
BMC and CAR presented in [19], i.e., BAC, BICAR, and
KCAR. Hybrid-CAR can solve more cases (166) than the
others, and six unique cases, i.e., benchmarks that cannot be
solved by all the other methods.

The following table shows the uniquely solved instances
of each technique (i.e., that no other tool can solve), and,
in parenthesis, in comparison to ABC-BMC and BAC, e.g.,
Hybrid-CAR solves 19 and 11 cases that cannot be solved
by these two tools, respectively. Moreover, we note that a
portfolio of only Hybrid-CAR and ABC-BMC can solve 178
instances, almost reaching the virtual best results (184) that a
portfolio of all these algorithms can solve. A detailed pairwise
comparison is shown in Fig. 6.

5Other tools, such as ABC-PDR, NUXMV-IC3, AVY [17] do not perform
well on unsafe cases [18] and are hence not included here.

V. CONCLUSION

In this article, we revisited the assumption literal ordering
strategies presented in [10]. We hypothesized that Intersection
works because of what we call core locality, which means
that similar cores help the SAT solver find proofs faster.
Our empirical data, as we showed, supports this claim. Both
Intersection and Rotation determine only a part of the literal
order, hence the order of most of the assumptions is left
arbitrary. Our improved strategy, CoreLocality (Section III-A),
generalizes Intersection and orders a larger part of the
assumptions sequence, while improving the core locality.
Together with prioritizing conflict literals (Section III-B) they
shorten rather significantly the time it takes the SAT solver
to find proofs. We also presented a hybrid approach called
Hybrid-CAR (Section III-C), which switches between different
configurations of CoreLocality during run time, while resetting
the U sequences. Our results show that these strategies perform
better on average than the reordering strategies of [10] and also
better than the various integrations of CAR with BMC [19]. In
particular, Hybrid-CAR is able to outperform all bug-finding
model-checking algorithms off-the-shelf.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using SAT procedures instead of BDDs,” in Proc.
Design Autom. Conf. (DAC), 1999, pp. 317–320.

[2] A. Biere. “AIGER format.” Accessed: Mar. 28, 2025. [Online].
Available: http://fmv.jku.at/aiger/FORMAT

[3] A. R. Bradley, “SAT-based model checking without unrolling,” in
Proc. 12th Int. Conf. Verif., Model Checking, Abstr. Interpret., 2011,
pp. 70–87.

[4] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. 22nd Int. Conf. Comput. Aided Verif., 2010,
pp. 24–40.

[5] R. Brummayer, A. Biere, and F. Lonsing, “BTOR: Bit-precise modelling
of word-level problems for model checking,” in Proc. Joint Workshops
6th Int. Workshop Satisfiability Modulo Theor. 1St Int. Workshop Bit-
Precise Reason., 2008, pp. 33–38.

[6] R. Brummayer et al., The AIGER and-Inverter Graph (AIG) Format
Version 20070427, Johannes Kepler Univ., Linz, Austria, 2007.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 States and beyond,” Inf. Comput.,
vol. 98, no. 2, pp. 142–170, 1992.

[8] “Artifacts.” Accessed: Mar. 28, 2025. [Online]. Available: https://github.
com/AnonymousAccO-O-O/HybridCAR

[9] Y. Dong, Y. Chen, J. Li, G. Pu, and O. Strichman, “Revisiting assump-
tions ordering in CAR-based model checking,” 2024, arXiv:2411.00026.

[10] R. Dureja, J. Li, G. Pu, M. Y. Vardi, and K. Y. Rozier, “Intersection
and rotation of assumption literals boosts bug-finding,” in Proc. 11th
Int. Conf. Verif. Softw. Theor., Tools, Exp., 2020, pp. 180–192.

[11] “HWMCC’20.” 2020. [Online]. Available: http://fmv.jku.at/hwmcc??/
[12] “HWMCCŠ24.” 2024. [Online]. Available: https://hwmcc.github.io/

2024/
[13] “IC3Ref.” Accessed: Mar. 28, 2025. [Online]. Available: https://github.

com/arbrad/IC3ref
[14] J. Li, R. Dureja, G. Pu, K. Y. Rozier, and M. Y. Vardi, “SimpleCAR: An

efficient bug-finding tool based on approximate reachability,” in Proc.
30th Int. Conf. Comput. Aided Verif. (CAV), 2018, pp. 37–44.

[15] J. Li, S. Zhu, Y. Zhang, G. Pu, and M. Y. Vardi, “Safety model checking
with complementary approximations,” in Proc. 36th Int. Conf. Comput.-
Aided Design (ICCAD), 2017, pp. 95–100.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 



DONG et al.: REVISITING ASSUMPTIONS ORDERING IN CAR-BASED MODEL CHECKING 4037

[16] C. Oh, “Between SAT and UNSAT: The fundamental difference in
CDCL SAT,” in Proc. 18th Int. Conf. Theory Appl. Satisf. Test. (SAT),
2015, pp. 307–323.

[17] H. G. V. Krishnan, Y. Vizel, V. Ganesh, and A. Gurfinkel, “Interpolating
strong induction,” in Proc. 31st Int. Conf. Comput. Aided Verif., 2019,
pp. 367–385.

[18] Y. Xia, A. Becchi, A. Cimatti, A. Griggio, J. Li, and G. Pu, “Searching
for I-good lemmas to accelerate safety model checking,” in Proc. 35th
Int. Conf. Comput. Aided Verif., 2023, pp. 288–308.

[19] X. Zhang, S. Xiao, J. Li, G. Pu, and O. Strichman, “Combining
BMC and complementary approximate reachability to accelerate bug-
finding,” in Proc. 41st IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2022, pp. 1–9.

Yibo Dong received the B.S. degree from Shanghai Jiao Tong University,
Shanghai, China, in 2021. He is currently pursuing the M.S. degree with
Software Engineering Institute, East China Normal University, Shanghai.

His main research interest lies in formal verification, especially model
checking.

Yu Chen received the B.S. degree from Shanghai University, Shanghai, China,
in 2020, and the M.S. degree from East China Normal University, Shanghai,
in 2023.

She is currently a Teaching Assistant with Chuzhou University, Anhui,
China. Her main research interest lies in temporal logic and model checking.

Jianwen Li received the Ph.D. degree from Software Engineering Institute,
East China Normal University, Shanghai, China, in 2014.

He is currently a Research Professor with Software Engineering Institute,
East China Normal University. His research interests include formal verifica-
tion, logic, and automata theory.

Geguang Pu received the B.S. degree in mathematics from Wuhan University,
Wuhan, China, in 2000, and the Ph.D. degree in mathematics from Peking
University, Beijing, China, in 2005.

He is currently a Professor with Software Engineering Institute, East China
Normal University, Shanghai, China. He has published over 100 publications
on software engineering and system verification, including ICSE, FSE, ASE,
and CAV. His research interests include program testing and reliable AI
systems.

Prof. Pu served as a PC member for more than 20 international conference
committees.

Ofer Strichman received the Ph.D. degree from Weizmann Institute, Rehovot,
Israel, in 2001.

He worked with Weizmann Institute under the supervision of Amir
Pnueli on translation validation for compilers, Bounded Model Checking,
and other topics in formal verification. He then was a Postdoctoral Fellow
with Carnegie Mellon University, Pittsburgh, PA, USA, in Ed Clark’s group,
where he mostly worked on model-checking, learning, predicate abstraction,
and decision procedures. He published two books: “Decision procedures -
an algorithmic point of view” together with Daniel Kroening, and “Efficient
decision procedures for validation,” edited two others and coauthored more
than 100 peer-reviewed articles, mostly in formal verification and SAT. In
the SAT field he is mostly known for his contributions to linear-time proof
manipulations, exploiting symmetries and incremental satisfiability. In formal
verification he is mostly known for his invention of “regression verification”
and various decision procedures, mostly for equalities with uninterpreted
functions.

Prof. Strichman won the 2021 CAV award for “pioneering contributions
to the foundations of the theory and practice of satisfiability modulo
theories (SMT).”

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 22,2025 at 05:16:49 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


