
Revisiting Assumptions Ordering in CAR-Based
Model Checking

Yibo Dong1, Yu Chen2, Jianwen Li1, Geguang Pu1, Ofer Strichman3
1East China Normal University, China, prodongf@gmail.com, {jwli, ggpu}@sei.ecnu.edu.cn

2Chuzhou University, China, chenyu@chzu.edu.cn
3Technion, Isreal, ofers@technion.ac.il

Abstract—Model checking is an automatic formal verification
technique that is widely used in hardware verification. The
state-of-the-art complete model-checking techniques, based on
IC3/PDR and its general variant CAR, are based on computing
symbolically sets of under- and over-approximating state sets
(called ‘frames’) with multiple calls to a SAT solver. The
performance of those techniques is sensitive to the order of
the assumptions with which the SAT solver is invoked, because
it affects the unsatisfiable cores that it emits if the formula is
unsatisfiable — which the solver emits when the formula is
unsatisfiable — that crucially affect the search process. This
observation was previously published in [10], where two partial
assumption ordering strategies, intersection and rotation were
suggested (partial in the sense that they determine the order
of only a subset of the literals). In this paper we extend and
improve these strategies based on an analysis of the reason
for their effectiveness. We prove that intersection is effective
because of what we call locality of the cores, and our improved
strategy is based on this observation. We conclude our paper
with an extensive empirical evaluation of the various ordering
techniques. One of our strategies, Hybrid-CAR, which switches
between strategies at runtime, not only outperforms other, fixed
ordering strategies, but also outperforms other state-of-the-art
bug-finding algorithms such as ABC-BMC.

Index Terms—Hardware Verification, Model Checking, Com-
plementary Approximate Reachability

I. INTRODUCTION

Model checking is a widely used formal verification tech-
nique in hardware design, where it ensures that a system model
satisfies given safety properties. For safety properties, the
model checking problem reduces to reachability analysis [7],
and various techniques have been developed to address this,
including Bounded Model Checking (BMC) [1], Property
Directed Reachability (PDR) [3], and Complementary Approx-
imate Reachability (CAR) [15]. Among these methods, CAR
has shown great potential by solving instances that BMC and
PDR cannot, but its performance remains sensitive to the way
assumption literals are ordered when passed to the SAT solver.
This sensitivity arises because the order in which literals are
processed affects the generation of unsatisfiable cores (UCs),
which are essential for driving the state-space exploration. This
paper focuses on improving the quality of those UCs, which
accelerates the narrowing process of the O-frames1.

To improve UC quality in CAR, it is essential to understand
how SAT solvers generate UCs. In each SAT call in CAR,

Jianwen Li and Geguang Pu are the corresponding authors. This work is
supported by NSFC Grant #U21B2015 and #62372178.

1CAR with the improvements reported here has recently won the 3rd place
in the bit-level model-checking competition [12].

a formula of the form
∧

l∈A l ∧ ϕ is processed, where A
is a sequence of assumption literals and ϕ is a Boolean
formula in Conjunctive Normal Form (CNF). Modern CDCL-
based SAT solvers handle A by positioning its literals in
order as the initial decisions, and perform as usual Boolean
Constraint Propagation (BCP). A contradiction emerging from
those decisions indicate unsatisfiability. In that case the solver
outputs a UC, which is a subset of A that is sufficient to render
ϕ unsatisfiable.

The order of literals in A impacts the resulting UC and
hence the overall performance of CAR. Previous work devel-
oped assumption-ordering strategies that improve the quality
of UCs. For example, IC3REF [13] sorts literals by their
frequency, while SIMPLECAR [14], a CAR implementation,
uses two strategies: Intersection, which prioritizes literals in
both the current state and the previous UC, and Rotation,
which prioritizes literals found in previously failed states [10].
These strategies empirically enhance bug-finding performance.
Indeed, SIMPLECAR is one of the baseline approaches against
which we evaluate our improvements. Additionally, we com-
pare our contributions to the leading BMC implementations
and recent optimizations of CAR [19].

Our contributions are as follows:

1) We revisit one of the two heuristics proposed in [10],
called Intersection, and suggest an explanation for its
effectiveness. Briefly, we show that it leads to finding
proofs of unsatisfiability faster because of what we call
the locality of the cores. Based on this observation, we
propose an extension of this technique that improves
locality, and decides on the order of more literals
comparing to the original version of Intersection. We
also show how it affects a combination of locality with
another strategy from [10] called Rotation.

2) We observe that the last added literal to a UC, which we
call the conflict literal, is necessarily part of a minimal
core. We empirically show that prioritizing this literal
reduces the time to find proofs.

3) We introduce Hybrid-CAR, a dynamic strategy that
alternates between literal-ordering strategies at runtime,
achieving superior performance over static approaches
and surpassing existing bug-finding methods, including
the SOTA BMC implementation ABC-BMC [4].

4) We provide an extensive empirical study of the influence
of assumption ordering on the UC, thereby empirically

mailto:
mailto:
mailto:

demonstrating the significance of literal ordering in
CAR-based model checking.

Owing to space considerations, we cannot include here de-
tailed preliminaries about the PDR and CAR model-checking
algorithms, and have to assume that the reader is familiar with
them. These, as well as additional analysis of the experiments,
appear in the long version of this article [9].

II. LITERAL REORDERING: PRIOR WORK AND INSIGHTS

We start with a high-level description of the CAR algorithm,
the foundation of our work. CAR maintains two sequences
of state sets: an over-approximating sequence (O) and an
under-approximating sequence (U). The sequences start with
O0 = ¬P (the negation of the safety property) and U0 = I
(the initial states). CAR updates these sequences by checking
the satisfiability of transitions for each state in U . If a transition
is satisfiable, then the target state is added to U to widen it
; Otherwise, the UC is added to O, which narrows it. The
process terminates when a state in U intersects with ¬P
(returning ‘Unsafe’) or the union of O subsumes the next
frame (returning ‘Safe’).

As mentioned in the introduction, modern CDCL-based
SAT solvers take as input, in addition to the formula ϕ,
a vector of literals A, called the assumptions, and checks
whether

∧
l∈A l ∧ ϕ is satisfiable. The SAT solver chooses

the assumption literals to be the first decisions in the order
that they are given. As usual, after each such decision, it
invokes BCP. Suppose there is already a conflict in the first
|A| (A ⊆ A) decision levels (recall that this can happen after
learning and backtracking to those levels). In that case, the
search is terminated – the formula is declared unsatisfiable
under A (with further analysis the solver can detect a subset
of A that is responsible for the conflict, but this is immaterial
to the discussion). This implies that assumption literals after
|A| in the predefined order cannot be part of the generated UC.
As a result, prior assumption literals have a higher probability
of appearing in the UC. That is why literal ordering matters.

The Intersection strategy and locality of cores: The
Intersection strategy [10] places the intersection with the last
UC in the beginning of the assumptions sequence. The literals
from this UC are placed first in the order, which makes them
more likely to appear in the new core, hence make consecutive
cores similar. This is what we call ‘the locality of the cores’.

The term locality is used, among other places, in describing
decision heuristics in SAT solving. All CDCL solvers use
decision heuristics that prioritize variables that participated in
recent conflicts, hence they focus the search. Although this
is not directly related to the current paper, our hypothesis
is that this decision strategy is effective because it generates
proofs faster: similar clauses are necessary for constructing a
resolution proof (for satisfiable cases, learning has little effect
to begin with [16]). And if there is a small proof, it is better
to focus the search and hopefully find it rather than generating
unrelated clauses.

Our argument is that finding cores in CAR that are similar
should have a similar effect: it makes proofs involving the

last uc : { 2, -3} s : { -1, 2, 3, -4, 5}

iCube = { 2 } rCube = { -1, 2, 5 }

last failed state : { -1, 2, -3, 4, 5}

si = { 2, -1, 3, -4, 5 } sr = { -1, 2, 5, 3, -4 }si+r = { 2, -1, 5, 3, -4 }

“Intersection” “Rotation”“Combination”

last uc ∩ s last failed state ∩ s

Fig. 1. An illustrating example of the reordering process, where s is the
incoming state, ‘last uc’ and ‘last failed state’ are both from the last UNSAT
query. si, sr and si+r each represents the reordered state ŝ using only
Intersection, only Rotation and their combination, respectively.

O frames easier and hence faster. In other words, every
time that we check whether a state can reach an O frame,
if that frame contains apriori many of the clauses that are
necessary for the proof that the state is not reachable, the proof
will converge faster. We tested this hypothesis empirically
based on benchmarks from the HWMCC 2015 and 2017 [11]
competitions2, and the results appear in the following table. It
confirms that locality improves runtime for UNSAT cases and
speeds up overall state reachability proofs.

Strategy Natural Intersection
Average time of UNSAT calls(s) 0.0132 0.0105
Average time of finding proofs(s) 0.9541 0.6287

The first row shows the effect of locality on the average run
time of UNSAT cases, and the second is the average overall
time for proving that a state cannot reach an O frame. Both
show an acceleration.

The Rotation strategy: The Rotation technique prioritizes
literals common in recent failed states. The rationale is that
it helps the solver avoid getting trapped for long in various
parts of the search space, by generating UCs that are mostly
based on those common literals. It maintains a vector of literals
common with a fixed size equal to the size of a state.

Our results, summarized in the following table, show a
reduction in the number of SAT calls with this strategy. The
basis of the evaluation is the same as before.

Strategy Natural Rotation
Average #SAT calls to find proofs 207.13 190.25

Average time to find proofs (s) 0.9541 0.7277

Combining Intersection and Rotation: When it comes to
combining the two strategies, it should be noted that the latest
UC selected in Intersection is derived from the last failed
state. This observation leads to the conclusion that the cube
generated via Intersection, called iCube, is a subset of the
cube generated via Rotation, which is called rCube. As shown
in Fig.1, to integrate the two algorithms is merely to position
the literals produced by Intersection ahead of those generated
by Rotation while eliminating duplicate literals in the latter.

The results in the following table show that indeed the
combination finds proofs faster on average:

Strategy Natural Combination (I+R)
Average time of UNSAT calls(s) 0.0132 0.0137

Average #(SAT Query) to find proof 207.13 173.57
Average time of finding proofs(s) 0.9541 0.5990

III. LITERAL ORDERING STRATEGIES: NEW APPROACHES

As discussed in the previous section, Intersection and Ro-
tation, either separately or combined, determine the position

2The experiment setup in this section is the same as that in Sec. IV.

of only a limited portion of the whole literal set, whereas the
position of other literals is determined by what we called the
‘natural’ order, i.e., arbitrary.

In this section we will show a way to increase the portion
of literals that their position is determined, utilizing more his-
torical information on the cores, and consequently improving
the overall runtime.

A. Literal reordering with CoreLocality

Stemming from the intuition that incorporating recent UCs
beyond the most recent one could help by improving locality,
we propose a new literal ordering strategy CoreLocality, which
is outlined in Alg. 1. By expanding the scope of considered
UCs, intersecting with each and organizing the results chrono-
logically (with the intersection with newer UCs placed earlier),
CoreLocality facilitates sorting a greater number of literals,
thereby refining the guidance of the search.

As shown in the algorithm, in addition to the state s and
frame level l, a new parameter iLimit is introduced to denote
the limit on the amount of UCs to utilize. The for block at Line
2-8 computes the intersection according to the corresponding
UC, and pushes them into ŝ in order. For the if block at Line
11-13, it is similar to Rotation.

Algorithm 1: Reordering algorithm: CoreLocality
Input: A state s, frame level l, configuration iLimit
Output: ŝ: The reordered s

1 ŝ := ∅
2 for k : 0 → iLimit do
3 Let refk = getTheLast kth UC(l)
4 if refk ̸= ∅ then
5 for each lit ∈ refk do
6 if lit ∈ s ∧ lit /∈ ŝ then
7 ŝ.pushBack(lit)
8 ▷ Literals added here form the iCubes

9 cV ec := getCommonV ector(l)
10 for each lit ∈ cV ec do
11 if lit ∈ s ∧ lit /∈ ŝ then
12 ŝ.pushBack(lit)
13 ▷ Literals added here form the rCube

14 for each l ∈ s ∧ l /∈ ŝ do
15 ŝ.pushBack(l)

16 return ŝ

Example III.1. Fig. 2 illustrates a computational process for
the CoreLocality strategy with several different iLimit values.
The left dashed box shows the last 3 UCs in chronological
order (1st being the most recent one), along with the last failed
state, and the current state s. Next, iCubes and rCube are
computed based on this data, similar to the calculation in
Fig. 1, as shown in the middle dashed box. Finally, in the
right dashed box, s is reordered by iCubes and rCube based
on different choices of iLimit. As is shown, by incorporating
the 2nd UC, the literal ‘-4’ is pushed forward.

The distinction between CoreLocality and Intersection is
demonstrated in Fig. 3. It prioritizes literals that would other-
wise be relegated to the rear of rCube, or even after rCube.

3rd uc : { -1, -3 , 5 }
2nd uc : { -1, -2 ,-4 }
1st uc : { 2, -3 }
last failed state : { -1, 2, -3, 4, 5}

iCube1 = { 2 }
iCube2 = { -1, -4 }
iCube3 = { -1, 5 }
rCube = { -1, 2, 5 }S : { -1, 2, 3, -4, 5}

Local(1) = { 2, -1, 5, 3, -4 }

Local(3) = { 2, -1, -4, 5, 3 }

Local(2) = { 2, -1, -4, 5, 3 }

Fig. 2. An example of the CoreLocality strategy. UCs are in chronological
order, where ‘1st UC’ is from the most recent UNSAT query. Local(k)
denotes a reordered state, utilizing k UCs, i.e., iLimit = k.

iCube rCube unsorted

iCube1 iCube2 iCube… unsortedrCube

I+R

Local

}

Fig. 3. Comparing CoreLocality and a combination of Intersection and
Rotation. Some literals (blue dots) from rCube and unsorted are prioritized.

Tuning CoreLocality: In the CoreLocality strategy, the
parameter iLimit, which denotes the maximum number of
utilised UCs, serves as a metric of the ‘local’ scope, defin-
ing the range within which a UC is considered ‘recent’.
In other words, given that the relevance of a UC to the
current query diminishes as it becomes more distant, setting a
limit excludes prior outdated UCs from current consideration.
While increasing the value of iLimit allows for the inclusion
of additional information, it also diminishes the impact of
Rotation due to the precedence of iCubes over the rCube.
Furthermore, while it is feasible to set the iLimit large enough
to order all the literals, this approach is observed to be highly
inefficient because getting one more literal reordered (a literal
that appears in a subsequent UC, but not in any previous one)
often necessitates thousands or even tens of thousands of UCs.

The optimal value of iLimit depends, of course, on the
specific problem context and constitutes a trade-off between
literal coverage and the computational cost to achieve it.
Indeed, the results in the table below (the left value of
the ‘Time’ column) show that the speed to find proofs of
CoreLocality depends on iLimit, but, as expected, it is not
monotonic. They also show that with these low values of
iLimit we are able to find proofs faster than the previous
methods. In practice the best iLimit value can be found based
on experiments, but there is also an option to change it during
run time, as we will explain later.

Strategy Time (s) Strategy Time (s)
Natural 0.94 / 0.95 Local(3) 0.64 / 0.55

Combination(I+R) 0.77 / 0.59 Local(4) 0.57 / 0.48
Local(2) 0.61 / 0.58 Local(5) 0.64 / 0.50

B. Moving forward the conflict literals

Not all literals in a UC are equal. Specifically, the last literal
added to the core, by definition, was necessary for that proof
(in other words, it is part of a minimal core). We call it the
conflict literal. During the process of getting UCs, we give
such conflict literals a higher priority by placing them in the
front of the core. For example, suppose that iCube = (1, 2, 3)
and literal 3 is the conflict literal of this clause. Then we re-
order iCube to (3, 1, 2), before we proceed with building the
assumption literal order as described earlier (Alg. 1). As shown
in the table above (the right value of the ‘Time’ column),

this small optimization accelerates, on average, the process of
finding proofs. From here on, when we say CoreLocality, we
mean CoreLocality together with this optimization.

C. Hybrid-CAR: Combining different orderings

Empirically, the best configuration of CoreLocality varies
according to the specific problem and is hard to predict. It
is often observed that a model checking problem that can
be solved easily with one literal ordering strategy will time-
out with another. This encouraged us to research a dynamic
strategy, by which the configuration is periodically switched.

We coupled this direction with a new restart mechanism
for CAR. Our experiments show that the U-sequence in CAR
frequently expands quickly, resulting in an increasingly longer
time to extend a new O frame. Perhaps, then, resetting the U
frames to I and the O sequence to O[0], and progressing with
a different literal ordering can converge faster. Based on this
hypothesis we implemented Hybrid-CAR, a version of CAR
in which a timer is kept in the SAT solver. Once it exceeds
a predefined value, it triggers a restart procedure: (a) clear
all the U states other than the states in the lowest level, and
(b) increase the value of iLimit by one. Finally, to preserve
completeness, we give the option to increase the time limit,
each time restart is called.

IV. EXPERIMENTS

Our experiments focused on bug-finding only, and ac-
cordingly we implemented our suggested algorithms on top
of SIMPLECAR [14], which is an implementation of the
CAR algorithm, in its best version for bug-finding [10]. We
compared ourselves to the best public BMC implementation
(the one in ABC-BMC [4]), and the best combination of
CAR and BMC in [19]. Our evaluation was based on 438
benchmarks3 in the Aiger [6] format from the single safety
property track of the 2015 and 2017 [11] Hardware Model
Checking Competition (HWMCC)4, which is consistent with
the benchmark set of [19]. All the counterexamples found
were successfully verified with the third-party tool aigsim
that comes with the Aiger package [2]. All the artifacts are
available in Github [8].

We ran the experiments on a cluster of Linux servers, each
equipped with an Intel Xeon Gold 6132 14-core processor at
2.6 GHz and 96 GB RAM. The version of the operating system
is Red Hat 4.8.5-16. For each running instance, the memory
was limited to 8 GB and the time was limited to 1 hour.
Q1. How does CoreLocality perform when compared to
the present best reordering strategy in CAR, i.e., Inter-
section + Rotation? The previous literal-ordering strategy for
CAR, namely the combination of Intersection and Rotation
as published in [10], is very close to CoreLocality when
iLimit is set to one (‘Local-1’), except that CoreLocality
introduces a reordering inside the UCs (see Sec. III-A). Recall
that in Sec. II we presented empirical evidence that confirms

3Results of these benchmarks are either unknown or known to be unsafe.
4These are the last two years of HWMCC using the AIGER format. Since

2019, the official format switched to a word-level format BTOR [5].

independently of [10] that these two strategies improve the
empirical results.

146 146

149 149

155
154

153

156
155

4826.65 4825.84
4787.44 4773.95

4675.65 4687.55 4702.04
4657.18 4672.30

4000.00

4100.00

4200.00

4300.00

4400.00

4500.00

4600.00

4700.00

4800.00

4900.00

130

135

140

145

150

155

160

165

170

Base Local-1 Local-2 Local-3 Local-4 Local-5 Local-6 Local-7 Local-8

#(Solved) Par-2

Fig. 4. Results on different reordering strategies, in terms of the total solved
instances and PAR-2 score. ‘Base’ refers to the combination of Intersection
and Rotation, ‘Local-i’ (1 ≤ i ≤ 8) represents the CoreLocality strategy with
iLimit = i.

As is shown in Figure 4, the performance of CoreLocality
with 1 < iLimit ≤ 8 outperforms that of the base strategy
on both the number and time of solved cases, peaking at
iLimit = 7. Increasing the number of solved cases, even by a
few instances, is important in light of the decades of research
and development of model checkers.

10 1 100 101 102 103 104

Base (baseline)
10 1

100

101

102

103

104

Lo
ca

l-7

The Par-2 score calculates
average time consumption
while doubling the time for
instances that timed out.
CoreLocality with iLimit > 1
consistently consumes less
time than the Base strategy.
It is also apparent that there
is a correlation between the
number of solved instances and
the total time consumption. A
detailed pairwise comparison between the peak and Base is
shown below on the right.

Overall, CoreLocality outperforms the Base strategy on both
the number and time of solved cases. Notably, the performance
of CoreLocality with different configurations is not correlated
to the value of iLimit. This is consistent with our discussion
in Section III-A, that increasing the limit does not have a
monotonic effect.
Q2: How does Hybrid-CAR perform when compared to
the state-of-the-art bug-finding algorithms? We compared
Hybrid-CAR to the original SIMPLECAR, BAC-1500 (the
best solution shown in [19]) and ABC-BMC on bug finding5.

It turns out that Hybrid-CAR performs better than the
competitors. With a 1-hour timeout, the best version of Hybrid-
CAR, in which the restart is invoked every 6 minutes, solves
166 cases in total, which is seven more than that solved by
ABC-BMC, and 20 more than that solved by the original
SIMPLECAR. With a 6-hour timeout (shown in the long
version [9] of this article), this version of Hybrid-CAR solves
169 cases, which is 20 more than the original SIMPLECAR,

5Other tools such as ABC-PDR, NUXMV-IC3, AVY [17] do not perform well
on unsafe cases [18] and are hence not included here.

146

166

159

161

155
151

184
178
178

90

100

110

120

130

140

150

160

170

180

190

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

of

 B
en

ch
m

ar
ks

 S
ol

ve
d

CPU Time(s)

simpleCAR 146
HybridCAR 166
ABC-BMC 159
BAC 161
BICAR 155
KCAR 151
VBS 184
VBS without HybridCAR 178
HybridCAR+BMC 178

Fig. 5. Comparison of run-time performance among different model checkers.
VBS represents the virtual best, i.e., parallel running all and taking the best.

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

AB
C-

BM
C

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

BA
C

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

BI
CA

R

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

KC
AR

Fig. 6. Pairwise Comparison of Hybrid-CAR and competitors. Timeout
instances in either are marked in red.

and outperforms the competition. Furthermore, Hybrid-CAR
solves more instances in just one hour (166) than that solved
by ABC-BMC in 6 hours (165).

Figure 5 includes the comparison among the best version
of Hybrid-CAR and ABC-BMC, as well as the combinations
of BMC and CAR presented in [19], i.e., BAC, BICAR and
KCAR. Hybrid-CAR can solve more cases (166) than the
others, and six unique cases, i.e., benchmarks that cannot be
solved by all the other methods.

The following table shows the uniquely solved instances
of each technique (i.e. that no other tool can solve), and,
in parenthesis, in comparison to ABC-BMC and BAC, e.g.,
Hybrid-CAR solves 19 and 11 cases that cannot be solved
by these two tools, respectively. Moreover, we note that a
portfolio of only Hybrid-CAR and ABC-BMC can solve 178
instances, almost reaching the virtual best results (184) that a
portfolio of all these algorithms can solve. A detailed pairwise
comparison is shown in Fig. 6.

simpleCAR 0 (13 / 4) ABC-BMC 5 (0 / 15)
Hybrid-CAR 6 (19 / 11) BICAR 0 (5 / 10)
BAC 4 (17 / 0) KCAR 1 (10 / 6)

V. CONCLUSION

In this paper, we revisited the assumption literal ordering
strategies presented in [10]. We hypothesized that Intersection
works because of what we call core locality, which means
that similar cores help the SAT solver find proofs faster.
Our empirical data, as we showed, supports this claim. Both
Intersection and Rotation determine only a part of the literal
order, hence the order of most of the assumptions is left
arbitrary. Our improved strategy, CoreLocality (Sec. III-A),
generalizes Intersection and orders a larger part of the assump-
tions sequence, while improving the core locality. Together
with prioritizing conflict literals (Sec. III-B) they shorten
rather significantly the time it takes the SAT solver to find
proofs. We also presented a hybrid approach called Hybrid-
CAR (Sec. III-C), which switches between different configu-
rations of CoreLocality during run time, while resetting the

U sequences. Our results show that these strategies perform
better on average than the reordering strategies of [10] and also
better than the various integrations of CAR with BMC [19]. In
particular, Hybrid-CAR is able to outperform all bug-finding
model-checking algorithms off-the-shelf.

REFERENCES

[1] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Proceedings
of Design Automation Conference (DAC), pages 317–320, 1999.

[2] Armin Biere. AIGER Format. http://fmv.jku.at/aiger/FORMAT.
[3] Aaron R. Bradley. SAT-based model checking without unrolling. In

Ranjit Jhala and David Schmidt, editors, Verification, Model Checking,
and Abstract Interpretation, pages 70–87. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[4] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, pages 24–40, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[5] Robert Brummayer, Armin Biere, and Florian Lonsing. Btor: bit-
precise modelling of word-level problems for model checking. In
Proceedings of the joint workshops of the 6th international workshop
on satisfiability modulo theories and 1st international workshop on bit-
precise reasoning, pages 33–38, 2008.

[6] Robert Brummayer, Alessandro Cimatti, Koen Claessen, Niklas Een,
Marc Herbstritt, Hyondeuk Kim, Toni Jussila, Ken McMillan, Alan
Mishchenko, Fabio Somenzi, et al. The AIGER and-inverter graph (aig)
format version 20070427. In The AIGER And-Inverter Graph (AIG)
Format Version 20070427, 2007.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992.

[8] Artifacts. https://github.com/AnonymousAccO-O-O/HybridCAR.
[9] Yibo Dong, Yu Chen, Jianwen Li, Geguang Pu, and Ofer Strichman.

Revisiting assumptions ordering in CAR-based model checking (long
version). https://doi.org/10.48550/arXiv.2411.00026.

[10] Rohit Dureja, Jianwen Li, Geguang Pu, Moshe Y. Vardi, and Kristin Y.
Rozier. Intersection and rotation of assumption literals boosts bug-
finding. In Supratik Chakraborty and Jorge A. Navas, editors, Verified
Software. Theories, Tools, and Experiments, pages 180–192, Cham,
2020. Springer International Publishing.

[11] HWMCC . http://fmv.jku.at/hwmcc??/ (replace ?? with the year).
[12] HWMCC 2024. https://hwmcc.github.io/2024/.
[13] IC3Ref. https://github.com/arbrad/IC3ref.
[14] Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and

Moshe Y. Vardi. SimpleCAR: An efficient bug-finding tool based
on approximate reachability. In Proc. Int. Conf. Computer Aided
Verification (CAV), pages 37–44, 2018.

[15] Jianwen Li, Shufang Zhu, Yueling Zhang, Geguang Pu, and Moshe Y.
Vardi. Safety model checking with complementary approximations. In
Proceedings of the 36th International Conference on Computer-Aided
Design, ICCAD ’17, pages 95–100. IEEE Press, 2017.

[16] Chanseok Oh. Between SAT and UNSAT: The fundamental difference
in CDCL SAT. In Marijn Heule and Sean Weaver, editors, Theory and
Applications of Satisfiability Testing – SAT 2015, pages 307–323, Cham,
2015. Springer International Publishing.

[17] Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie
Gurfinkel. Interpolating strong induction. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification, pages 367–385, Cham,
2019. Springer International Publishing.

[18] Yechuan Xia, Anna Becchi, Alessandro Cimatti, Alberto Griggio, Jian-
wen Li, and Geguang Pu. Searching for i-good lemmas to accelerate
safety model checking. In Constantin Enea and Akash Lal, editors,
Computer Aided Verification, pages 288–308, Cham, 2023. Springer
Nature Switzerland.

[19] X. Zhang, S. Xiao, J. Li, G. Pu, and O. Strichman. Combining bmc
and complementary approximate reachability to accelerate bug-finding.
In Proc. 41st IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD),
2022.

http://fmv.jku.at/aiger/FORMAT
https://github.com/AnonymousAccO-O-O/HybridCAR
https://doi.org/10.48550/arXiv.2411.00026
http://fmv.jku.at/hwmcc??/
https://hwmcc.github.io/2024/
https://github.com/arbrad/IC3ref

	Introduction
	Literal Reordering: prior work and insights
	Literal Ordering Strategies: new approaches
	Literal reordering with CoreLocality
	Moving forward the conflict literals
	Hybrid-CAR: Combining different orderings

	Experiments
	Conclusion
	References

