
Revisiting Assumptions Ordering in CAR-Based
Model Checking

Yibo Dong†, Yu Chen§, Jianwen Li ‡, Geguang Pu‡, Ofer Strichman¶
†Each China Normal University, China, prodongf@gmail.com

‡Each China Normal University, China, {jwli,ggpu}@sei.ecnu.edu.cn
§Chuzhou University, China, chenyu@chzu.edu.cn

¶Technion, Isreal, ofers@technion.ac.il

Abstract—Model checking is an automatic formal verification
technique that is widely used in hardware verification. The
state-of-the-art complete model-checking techniques, based on
IC3/PDR and its general variant CAR, are based on computing
symbolically sets of under - and over-approximating state sets
(called ‘frames’) with multiple calls to a SAT solver. The
performance of those techniques is sensitive to the order of the
assumptions with which the SAT solver is invoked, because it
affects the unsatisfiable cores — which the solver emits when the
formula is unsatisfiable — that crucially affect the search process.
This observation was previously published in [15], where two
partial assumption ordering strategies, intersection and rotation
were suggested (partial in the sense that they determine the
order of only a subset of the literals). In this paper we extend
and improve these strategies based on an analysis of the reason
for their effectiveness. We prove that intersection is effective
because of what we call locality of the cores, and our improved
strategy is based on this observation. We conclude our paper
with an extensive empirical evaluation of the various ordering
techniques. One of our strategies, Hybrid-CAR, which switches
between strategies at runtime, not only outperforms other, fixed
ordering strategies, but also outperforms other state-of-the-art
bug-finding algorithms such as ABC-BMC.

Index Terms—Hardware Verification, Formal Verification,
Model Checking, Complementary Approximate Reachability,
CAR

I. INTRODUCTION

Model checking is an automatic formal verification tech-
nique that is central in the hardware design community [3],
[23]. Given a model M and a temporal property P over its
variables, it checks whether all the behaviours of M satisfy
P , i.e., whether M |= P . Once a system behaviour is detected
to violate P , the model checker returns a counterexample as
the evidence, which demonstrates the execution of the system
leading to the property violation. Such a process is called
bug-finding. If P is a safety property, the violation of P
is witnessed by a counterexample made of a finite number
of states. It is well known that model checking on safety
properties can be reduced to reachability analysis [12].

State-of-the-art safety model checking techniques include
Bounded Model Checking (BMC) [4], [6], Interpolation Model
Checking (IMC) [27], Property Directed Reachability (PDR)
(also called IC3) [8], [16], and Complementary Approximate
Reachability (CAR) [26], all of which integrate a SAT solver
internally. BMC is an incomplete method (it is only used for
finding bugs, not proving their absence) and is empirically very

fast at finding relatively shallow bugs (i.e., after a relatively
small number of steps from the initial state). IMC, PDR and
CAR are complete but are generally not as fast as BMC in
shallow bug-finding, and none of the existing implementations
of those techniques dominates the other. In [24], [26], it was
empirically shown that within a given time and hardware
resources, CAR is able to solve unsafe instances that BMC
cannot, and safety instances that IMC and PDR cannot, while
the converse is true as well. Therefore, a portfolio consisting
of different techniques is often maintained for different verifi-
cation tasks. However, model-checking (a PSPACE problem),
always falls short of the performance needs in the industry
when it comes to verifying large designs [14], [34]. Indeed,
performance optimisation of SAT-based model-checkers is an
active research area. Some recent examples are [38], [37], [30]
and [32].

In this paper, we focus on improving the performance
of CAR. We will describe in detail how CAR works in
Section II-D. It has many similarities to PDR, which is better
known, but also several distinctive features. For now, let us just
mention that, similar to PDR, it relies on many SAT calls over
relatively easy formulas. One of its elements is a sequence of
formulas O1 . . . Ok, called the over-approximating frames (or
O-frames, for short), where Oi, 1 ≤ i ≤ k, over-approximates
the states that can reach ¬P within i steps. CAR gradually
makes these frames more precise, i.e., less over-approximating,
by removing from them states that cannot reach ¬P within
the given number of steps. One of the critical elements of this
process is generalisation, that is, the ability to remove many
such states at once. This is done by finding the unsatisfiable
core (UC) of unsatisfiable SAT calls. The research we report
here focuses on improving the quality of those UCs, which
accelerates the narrowing process of the O-frames. To explain
our contributions, let us briefly recall how modern SAT solvers
find UCs.

The input to every SAT call in CAR (and PDR) takes
the form of

∧
l∈A l ∧ ϕ, where ϕ is a Boolean formula in

Conjunctive Normal Form (CNF) and A consists of a sequence
of literals, called the assumptions. Almost all modern CDCL-
based SAT solvers as of MINISAT [17] and GLUCOSE [1],
[2] support assumptions. They position the literals in A, in
order, as their first decisions, and perform Boolean Constraint
Propagation (BCP) as usual. Unsatisfiability is detected when

ar
X

iv
:2

41
1.

00
02

6v
1

 [
cs

.L
O

]
 2

9
O

ct
 2

02
4

mailto:
mailto:xxx@xxx
mailto:
mailto:

the BCP of an assumption contradicts the value of another
literal (because recall, all the literals in A and those that are
implied by them via BCP are implied by the formula regardless
of any decision). By analysing the trail, the solver can detect
which of the assumptions contributed to the conflict and emit
this list of assumptions as the UC, which is essentially a
compact reason for the unsatisfiability. In other words, the UC
is a subset of A that is sufficient for making ϕ unsatisfiable.

There can be multiple UCs in a given unsatisfiable formula,
and the order of the assumptions may affect the UC that is
found (and this, in turn, affects the overall performance of the
model-checker, whether it is CAR or PDR). More explicitly,
the literals that are propagated earlier are more likely to
appear in the returned UC. Indeed, prior work leveraged
this phenomenon to improve performance. Specifically, the
IC3ref model checker [21], which implements the original IC3
algorithm, sorts the literals in A in descending order based
on their appearance frequencies. The SIMPLECAR model-
checker [25], which implements CAR, uses two different
literal-ordering strategies, as reported in [15]: Intersection,
which prioritizes literals that are both in the current state and
the latest generated UC, and Rotation, which prioritizes literals
that are present in all previously explored states. This makes
these literals more likely to appear as part of the generated UC,
and empirically improves bug-finding performance. Indeed,
SIMPLECAR is one of the baseline implementations against
which we compare our contributions. In addition, we compare
ourselves against the best known BMC implementation, as
well as previous optimizations that were applied to CAR [38].

Our contributions are:
1) We revisit one of the two heuristics proposed in [15],

called Intersection, and suggest an explanation for its
effectiveness. Briefly, we show that it leads to finding
proofs of unsatisfiability faster because of what we
call the locality of the cores. Based on this observa-
tion, we propose an extension of this technique that
improves locality, and decides on the order of more
literals comparing to the original version of Intersection.
We also show how it affects a combination of locality
with another strategy from [15] called Rotation. Our
experimental results indicate that this leads to faster
convergence and increases the number of cases that can
be solved within a given timeout.

2) We define the conflict literal as the last literal found to
be in the UC by the SAT solver, and observe that unlike
the other literals in the core, it is necessary (without it,
the other literals do not form a core). We show that by
prioritizing these literals, proofs are found faster.

3) We suggest a method called Hybrid-CAR, which swaps
CoreLocality’s configurations during the search (based
on giving a time-limit to each configuration), which
not only outperforms the previous ‘static’ ordering ap-
proaches but also any other bug-finding techniques,
including ABC-BMC, the state-of-the-art BMC imple-
mentation [9] and previous published versions of CAR.

4) We provide an extensive empirical study about the

influence of assumption ordering on the UC generated,
with the existing and new strategies, thereby empirically
demonstrating the significance of literal ordering in
CAR-based model checkers.

We continue with preliminaries in the next section. In
Section III we describe the prior work of [15] and explain why
literal ordering matters. Section IV describes our contribution,
and Section V describes the results of our empirical evaluation.
Our conclusions are summarised in Section VI.

II. PRELIMINARIES

A. Boolean Transition System

A Boolean transition system Sys is a tuple (V, I, T), where
V and V ′ denote the set of variables in the present state
and the next state, respectively. The state space of Sys is the
set of possible variable assignments. I is a Boolean formula
corresponding to the set of initial states, and T is a Boolean
formula over V ∪ V ′, representing the transition relation.
State s2 is a successor of state s1 iff s1 ∪ s′2 |= T, which
is also denoted by (s1, s2) ∈ T . A path of length k is
a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈ T
holds for (1 ≤ i ≤ k − 1). A state t is reachable from s
in k steps if there is a path of length k from s to t. Let
X ⊆ 2V be a set of states in Sys. We denote the set of
successors of states in X as R(X) = {t | (s, t) ∈ T, s ∈ X}.
Conversely, we define the set of predecessors of states in X
as R−1(X) = {s | (s, t) ∈ T, t ∈ X}. Recursively, we define
R0(X) = X and Ri(X) = R(Ri−1(X)) where i ≥ 0, and
the notation R−i(X) is defined analogously. In short, Ri(X)
denotes the states that are reachable from X in i steps, and
R−i(X) denotes the states that can reach X in i steps.

B. Safety Model Checking and Reachability Analysis

Given a transition system Sys = (V, I, T) and a safety
property P , which is a Boolean formula over V , a model
checker either proves that P holds for any state reachable
from an initial state in I , or disproves P by producing a
counterexample. In the former case, we say that the system
is safe, while in the latter case, it is unsafe. A counterexample
is a finite path from an initial state s to a state t violating
P , i.e., t ∈ ¬P , and such a state is called a bad state.
In symbolic model checking, safety checking is reduced to
symbolic reachability analysis. Reachability analysis can be
performed in forward or backward search. Forward search
starts from initial states I and searches for reachable states of I
by computing Ri(X) with increasing values of i, while back-
ward search begins with states in ¬P and computes R−i(X)
with increasing values of i to search for states reaching ¬P .
Table I gives the corresponding formal definitions.

For forward search, Fi denotes the set of states that are
reachable from I within i steps, which is computed by itera-
tively applying R. At each iteration, we first compute a new
Fi, and then perform safe checking and unsafe checking. If the
condition in the safe/unsafe checking is satisfied, the search
process terminates. Intuitively, unsafe checking Fi ∩ ¬P ̸= ∅
indicates that some bad states are within Fi and safe checking

TABLE I
STANDARD REACHABILITY ANALYSIS.

Forward Backward

Base F0 = I B0 = ¬P
Induction Fi+1 = R(Fi) Bi+1 = R−1(Bi)

Safe Check Fi+1 ⊆
⋃

0≤j≤i Fj Bi+1 ⊆
⋃

0≤j≤i Bj

Unsafe Check Fi ∩ ¬P ̸= ∅ Bi ∩ I ̸= ∅

Fi+1 ⊆
⋃

0≤j≤i Fj indicates that all the reachable states
from I have been checked and none of them violate P . For
backward search, the set Bi is the set of states that can reach
¬P in i steps, and the search procedure is analogous to the
forward one.

C. SAT Solving and Unsatisfiable Cores

In propositional logic, a literal is an atomic variable or
its negation. A cube (resp. clause) is a conjunction (resp.
disjunction) of literals. The negation of a clause is a cube and
vice versa. A formula in Conjunctive Normal Form (CNF) is
a conjunction of clauses. For simplicity, we also treat a CNF
formula ϕ as a set of clauses. Similarly, a cube or a clause
c can be treated as a set of literals or a Boolean formula,
depending on the context.

We say a CNF formula ϕ is satisfiable if there exists an
assignment of each Boolean variable in ϕ such that ϕ is
true; otherwise, ϕ is unsatisfiable. A SAT solver can decide
whether a CNF formula ϕ is satisfiable or not. It emits a
Boolean assignment to the variables, called a model of ϕ,
if ϕ is satisfiable. Otherwise, it emits an unsatisfiable core
as explained in the introduction, based on a subset of the
assumptions.

D. Complementary Approximate Reachability (CAR)

CAR is a relatively new SAT-based safety model checking
approach that is essentially a reachability-analysis algorithm,
inspired by PDR [26]. Unlike BMC [4], [6], CAR is com-
plete, i.e., it can also prove correctness. CAR maintains two
sequences of state sets (also called ‘frames’), that are defined
as follows:

Definition 1 (Over/Under Approximating State Sequences).
Given a transition system Sys = (V, I, T) and a safety
property P , the over-approximating state sequence O ≡
O0, O1, . . . , Oi (i ≥ 0), and the under-approximating state
sequence U ≡ U0, U1, . . . , Uj (j ≥ 0) are finite sequences of
state sets such that, for k ≥ 0:

O-sequence U -sequence

Base: O0 = ¬P U0 = I

Induction: Ok+1 ⊇ R−1(Ok) Uk+1 ⊆ R(Uk)

Constraint: Ok ∩ I = ∅ −−

These sequences determine the termination of CAR as follows:
• Return ‘Unsafe’ if ∃i · Ui ∩ ¬P ̸= ∅.
• Return ‘Safe’ if ∃i ≥ 1 · (

⋃i
j=0 Oj) ⊇ Oi+1.

Notably, CAR can also use the over and under approxi-
mating sequences reversed, i.e., use the over-approximating
sequence in the forward direction, from the initial state towards
the negated property, while using the under-approximating
sequence from the negated property towards the initial state.
In this paper, we only consider the direction as stated in
Definition 1 (this was called ‘backward CAR’ in [24], [26]).

At the high level, CAR can be considered a general version
of PDR, as the O-sequence in CAR is not necessarily mono-
tone, while that in PDR is. As a result, CAR can have a more
flexible methodology for the state generalization, i.e., directly
using the UC from the SAT solver rather than computing
the relative inductive clauses. However, CAR needs to invoke
additional SAT queries to find the invariant (checking safety),
while PDR can do it with a simple syntactic check.

Algorithm 1: Complementary Approximate Reacha-
bility (CAR).
Input: A transition system Sys = (V, I, T) and a

safety property P
Output: ‘Safe’ or (‘Unsafe’ + a counterexample)

1 if SAT (I ∧ ¬P) then return ‘Unsafe’
2 U0 := I , O0 := ¬P
3 while true do
4 Otmp := ¬I
5 while state := pickState(U) is successful do
6 stack := ∅
7 stack.push(state, |O| − 1)
8 while |stack| ≠ 0 do
9 (s, l) := stack.top() // Assume s ∈ Uj

10 if l < 0 then return ‘Unsafe’
11 ŝ = Reorder (s, l + 1)
12 if SAT (ŝ, T ∧O′

l) then
13 t := GetModel()|V ′

14 Uj+1 := Uj+1 ∪ t // Widening U
15 stack.push(t, l − 1)

16 else
17 stack.pop()
18 uc := getUC()
19 if l + 1 < |O| then

Ol+1 := Ol+1 ∧ (¬uc)
20 else Otmp := Otmp ∧ (¬uc)
21 while l + 1 < |O| and ¬s ∈ Ol+1 do

l := l + 1
22 if l + 1 < |O| then stack.push(s, l)

23 if ∃i ≥ 1 s.t. (
⋃

0≤j≤i Oj) ⊇ Oi+1 then return
‘Safe’

24 Add a new state-set to O and initialize it to Otmp

Algorithm 1 describes CAR. It progresses by widening the
U sets, and narrowing the O sets, which are initialised at
Line 2 to I and ¬P , respectively. The algorithm maintains
a stack of pairs ⟨state, level⟩ where level refers to an index

of an O frame. Otmp, initialised to ¬I in Line 4 and later
updated, represents the next frame to be created.

Initially, a state from the U -sequence is heuristically picked
(Line 5) – by default from the end to the beginning – and
pushed to the stack. In each iteration of the internal loop,
CAR checks whether the state at the top of the stack, call it
s, can transition to the Ol frame. This is done by checking
if s ∧ T ∧ Ol

′ is satisfiable (Line 12, ŝ is exactly s if literal-
ordering is not invoked, otherwise a reordered version). If yes,
a new state t ∈ Ol is extracted from the model to update the
U -sequence (Line 13-15), effectively widening it; Otherwise,
the negation of the unsatisfiable core is used to constrain the
O frame of s (level l+1), effectively narrowing it (Lines 17-
19), and pushing s back to the stack. In Line 21, CAR skips
frames that already block s.

CAR returns ‘Unsafe’ as soon as the working level l is
less than 0, which indicates that a bad state in ¬P is reached
(line 10). Otherwise, CAR returns ‘Safe’ if the O sequence
includes all the states that can reach ¬P – this is checked via
the condition in Line 23, which was also mentioned as part of
Definition 1.

III. LITERAL REORDERING STRATEGIES: PRIOR WORK
AND INSIGHTS

Example III.1 (Prior literals are more likely to appear in the
UC). Let the clauses and assumptions be

ϕ
.
= {(a1 ∨ ¬a4 ∨ ¬a5), (a3 ∨ ¬a4 ∨ ¬a5), (a2 ∨ a4)}

A .
= (¬a1, a2,¬a3, a4, a5) .

Different literal orderings generate different UCs:

Order 1: Assum1 = (¬a1, a2, a4, a5,¬a3)
BCP (¬a1) :{(False ∨ ¬a4 ∨ ¬a5),

(a3 ∨ ¬a4 ∨ ¬a5), (a2 ∨ a4)}
BCP (a2) :{(False ∨ ¬a4 ∨ ¬a5),

(a3 ∨ ¬a4 ∨ ¬a5), (True ∨ a4)}
BCP (a4) :{(False ∨ False ∨ ¬a5),

(a3 ∨ False ∨ ¬a5), (True ∨ a4)}
BCP (a5) :{(False ∨ False ∨ False),

(a3 ∨ False ∨ False), (True ∨ a4)}
−→ UC1 = (¬a1, a4, a5).

Order 2: Assum2 = (a5, a4,¬a3, a2,¬a1)
BCP (a5) :{(a1 ∨ ¬a4 ∨ False),

(a3 ∨ ¬a4 ∨ False), (a2 ∨ a4)}
BCP (a4) :{(a1 ∨ False ∨ False),

(a3 ∨ False ∨ False), (a2 ∨ a4)}
BCP (¬a3) :{(a1 ∨ False ∨ False),

(False ∨ False ∨ False), (a2 ∨ a4)}
−→ UC2 = (a5, a4,¬a3).

As mentioned in the introduction, modern CDCL-based SAT
solvers such as the derivatives of MINISAT [17] take as input,

in addition to the formula ϕ, a vector of literals A, called the
assumptions, and checks whether

∧
l∈A l ∧ ϕ is satisfiable.

The SAT solver chooses the assumption literals to be the
first decisions in the order they are given. As usual, after
each such decision, it invokes BCP. Suppose there is already a
conflict in the first |A| (A ⊆ A) decision levels (recall that this
can happen after learning and backtracking to those levels). In
that case, the search is terminated – the formula is declared
unsatisfiable under A. The solver can be asked to analyse the
cause of the conflict and return it in the form of a subset of A.
This implies that assumption literals after |A| in the predefined
order cannot be part of the generated UC. As a result, prior
assumption literals have a higher probability of appearing in
the UC. That is why literal ordering matters. Example III.1
illustrates this point.

The Intersection strategy and locality of cores: The
Intersection strategy [15] places the intersection with the last
UC in the beginning of the assumptions sequence – see
Algorithm 2. It is an implementation of the Reorder function
that is called in line 11 of Algorithm 1 with level l+1, namely
the previous level. In line 5 of Algorithm 2, the literals from
this UC are placed first in the order, which makes them more
likely to appear in the new core, hence make consecutive cores
similar. This is what we call ‘the locality of the cores’.

The term locality is used, among other places, in describing
decision heuristics in SAT solving. All CDCL solvers use
decision heuristics that prioritize variables that participated in
recent conflicts, hence they focus the search. Although this
is not directly related to the current paper, our hypothesis
is that this decision strategy is effective because it generates
proofs faster: similar clauses are necessary for constructing a
resolution proof (for satisfiable cases, learning has little effect
to begin with [29]). And if there is a small core, it is better to
focus the search and hopefully find it rather than generating
unrelated clauses.

Our argument is that finding cores in CAR that are similar
should have a similar effect: it makes proofs involving the
O frames easier and hence faster. In other words, every time
that we check whether a state can reach an O frame, if that
frame contains apriori many of the clauses that are necessary
for the proof that the state is not reachable, the proof will
converge faster. We tested this hypothesis empirically, and
the results appear in Table II. While the first row shows the
effect of locality on the average run time of UNSAT cases,
the second row is the average overall time for proving that
a state cannot reach an O frame, i.e., the average time of an
iteration of the loop in line 5 of Algorithm 1. The evaluation
is based on benchmarks from the single safety property track
of the 2015 [18] and 2017 [19] Hardware Model Checking
Competition (HWMCC [7])1.

The Rotation strategy: The Rotation technique — demon-
strated in Algorithm 3 — maintains a vector common for each
level l to track the similarity among recent failed states, i.e.,

1The experiment setup in this section is the same as that in Sec. V.

TABLE II
THE INTERSECTION STRATEGY, THROUGH WHAT WE CALL LOCALITY,

ACCELERATES UNSAT CALLS AND PROOF FINDING

Strategy Natural Intersection
Average time of UNSAT calls(s) 0.0132 0.0105
Average time of finding proofs(s) 0.9541 0.6287

Algorithm 2: Reordering algorithm: Intersection
Input: A vector of literals s representing a state, and

the frame level l
Output: ŝ: the reordered s

1 ŝ = ∅;
2 lastUC := getLastUC(l); ▷ A vector of literals
3 for each lit ∈ lastUC do
4 if lit ∈ s then
5 ŝ.pushBack(lit)

6 for each lit ∈ s ∧ lit /∈ ŝ do
7 ŝ.pushBack(lit)

8 return ŝ

the common vector is a reordered version of the last failed
state, with the intersection of the failed states in the front.

The key insight behind Rotation [15] is that in cases where
the solver consistently returns similar states that share common
literals but fail to explore deeper levels, the search process may
be trapped within a specific sub-space. Consequently, Rotation
prioritises the common part in the front, intending to generate
a UC from it, thus facilitating an exit from the problematic
sub-space.

Algorithm 3: Reordering algorithm: Rotation
Input: A vector of literals s representing a state, and

the frame level l
Output: ŝ: the reordered s

1 ŝ = ∅;
2 cV ec := getCommonV ector(l); ▷ get common vector
3 for each lit ∈ cV ec do
4 if lit ∈ s then
5 ŝ.pushBack(lit)

6 for each lit ∈ s ∧ lit /∈ ŝ do
7 ŝ.pushBack(lit)

8 return ŝ
9 // Future updates:

10 if ¬SAT (ŝ, T ∧O′
l) ▷ Fail to reach

11 then
12 setCommonV ector(l, ŝ) ▷ Update common vector

While maintaining the consecutive intersection of all the
recent failed states is feasible, the length of the joint part
decreases, consequently containing diminishing information.
As a remedy, it was suggested in [15] to preserve a fixed length

TABLE III
THE ROTATION STRATEGY HELPS ESCAPING BAD AREAS OF THE SEARCH,
AND CONSEQUENTLY IT LOWERS THE NUMBER OF SAT QUERIES AND THE

TIME OF PROOFS.

Strategy: Natural Rotation
Average #SAT calls to find proofs 207.13 190.25

Average time to find proofs (s) 0.9541 0.7277

TABLE IV
THE COMBINATION OF INTERSECTION AND ROTATION CAN FIND PROOFS

FASTER.

Strategy: Natural Combination (I+R)
Average time of UNSAT calls(s) 0.0132 0.0137

Average #(SAT Query) to find proof 207.13 173.57
Average time of finding proofs(s) 0.9541 0.5990

of the common vector. As demonstrated in Fig. 1, common
always preserves the last failed state – and is reordered to
encode the historical information. While the first segment can
be regarded as the intersection of all states (

⋂sn
s1

, as shown in
the figure), the combination of the first two segments can be
seen as all the states except one (

⋂sn
s2

), and so forth.
The rational behind Rotation, is that it encourages finding

UCs made of literals that appeared in many recent failed
states, hence it diverts the search from areas that seem to lead
nowhere. This, in turn, should reduce the number of states
that are checked and the corresponding number of SAT calls.
Indeed, our results in Table III show a reduction in the number
of SAT calls with Rotation when proving that a state from a U
frame cannot reach any of the O frames (i.e., a single iteration
of the loop starting in line 5 of Algorithm 1). The basis of the
evaluation is the same as in Table II.

Combining Intersection and Rotation: When it comes to
combining these two algorithms, it should be noted that the
latest UC selected in Intersection is derived from the last
failed state. This observation leads to the conclusion that the
iCube (the cube generated via Intersection) is a subset of the
rCube (the cube generated via Rotation). As shown in Fig.2,
to integrate the two algorithms is merely to position the literals
produced by Intersection ahead of those generated by Rotation
while eliminating duplicate literals in the latter.

The results in Table IV show that indeed the combination
finds proofs faster on average.

IV. LITERAL ORDERING STRATEGIES: NEW APPROACHES

As discussed in the previous section, Intersection and Ro-
tation, either separately or combined, determine the position
of only a limited portion of the whole literal set, whereas the
position of other literals is determined by what we called the
‘natural’ order, which is arbitrary.

A motivating example is depicted in Fig.1. As shown, the
segment S3 −S2 within Ŝ3 remains unaffected by both literal
ordering strategies, i.e., it just remains the natural order, yet
it constitutes more than half of the state’s length.

cVec = �1

cVec = �2
 S2 - S1S2 ∩ S1

S2

S1

S3

 S3 - S2 �3

�2

 S3 ∩(S2 - S1）S1 ∩ S2∩ S3

reorder

��

…
…

 S3 ∩ S2

cVec = ��

cVec = �3

 ∩�1
��

 ∩�2
��

 ∩�3
��

 ……
∩��−1

��
∩��

��

reorder

Fig. 1. The updating process of cV ec, which is the core of Rotation. The consecutive intersection of recent failed states (
⋂

si) is in the very beginning.

last uc : { 2, -3}

s : { -1, 2, 3, -4, 5}
iCube = { 2 }

rCube = { -1, 2, 5 }

last uc ∩ s

last failed state : { -1, 2, -3, 4, 5}

last failed state ∩ s

sI = { 2, -1, 3, -4, 5 }

sr = { -1, 2, 5, -3, -4 }

sI+r = { 2, -1, 5, -3, -4 }

Reordered s:

Intersection

Rotation

Combination

Fig. 2. An example of the reordering process, where si, sr and si+r each
represents the reordered state ŝ using only Intersection, only Rotation and
their combination, respectively.

In this section we will show a way to increase the portion
of literals that their position is determined, utilising more his-
torical information on the cores, and consequently improving
the overall runtime.

A. Literal reordering with CoreLocality

Stemming from the intuition that incorporating recent UCs
beyond the most recent one could help by improving locality,
we propose a new literal ordering strategy CoreLocality, which
is outlined in Algorithm 4. By expanding the scope of con-
sidered UCs, intersecting with each and organizing the results
chronologically (with the intersection with newer UCs placed
earlier), CoreLocality facilitates sorting a greater number of
literals, thereby refining the guidance of the search.

As shown in the algorithm, in addition to the state s and
frame level l, a new parameter iLimit is introduced to denote
the limit on the amount of UCs to utilise. The for block at Line
2-8 computes the intersection according to the corresponding
UC, and pushes them into ŝ in order. For the if block at Line
11-13, it is similar to Rotation .

Example IV.1. Fig. 3 illustrates a computational process for
the CoreLocality strategy with several different iLimit values.
The upper dashed box in the figure shows the last 3 UCs in

Algorithm 4: Reordering algorithm: CoreLocality
Input: A state s, frame level l, configuration iLimit
Output: ŝ: The reordered s

1 ŝ := ∅
2 for k : 0 → iLimit do
3 Let refk = getTheLast kth UC(l)
4 if refk ̸= ∅ then
5 for each lit ∈ refk do
6 if lit ∈ s ∧ lit /∈ ŝ then
7 ŝ.pushBack(lit)
8 ▷ Literals added here form the iCubes

9 cV ec := getCommonV ector(l)
10 for each lit ∈ cV ec do
11 if lit ∈ s ∧ lit /∈ ŝ then
12 ŝ.pushBack(lit)
13 ▷ Literals added here form the rCube

14 for each l ∈ s ∧ l /∈ ŝ do
15 ŝ.pushBack(l)

16 return ŝ

chronological order (1st being the most recent one), along
with the last failed state, and the current state s. Next, iCubes
and rCube are computed based on the above data, similar to
the calculation in Fig. 2, as shown in the lower left dashed
box. Finally, in the lower right dashed box, s is reordered
by iCubes and rCube based on different choices of iLimit.
As is shown, by incorporating the 2nd UC, the literal ‘-4’ is
successfully impacted.

The distinction between CoreLocality and Intersection is
demonstrated in Fig. 4). It prioritises literals that would
otherwise be relegated to the rear of rCube, or even after
rCube.

3rd uc : { -1, -3 , 5 }
2nd uc : { -1, -2 ,-4 }
1st uc : { 2, -3 }
last failed state : { -1, 2, -3, 4, 5}

iCube1 = { 2 }
iCube2 = { -1, -4 }
iCube3 = { -1, 5 }
rCube = { -1, 2, 5 }

S : { -1, 2, 3, -4, 5}

Local(1) = { 2, -1, 5, 3, -4 }

Local(3) = { 2, -1, -4, 5, 3 }

Local(2) = { 2, -1, -4, 5, 3 }

∩

Fig. 3. An example of the CoreLocality strategy. Local(k) denotes reordered
state utilizing k UCs, i.e., iLimit = k.

iCube rCube unsorted

iCube1 iCube2 iCube… unsortedrCube

I+R

Local }

>

Fig. 4. The difference between CoreLocality and combination of Intersection
and Rotation. Some literals (blue dots) from rCube and unsorted are
prioritised.

Tuning CoreLocality: In the CoreLocality strategy, the
parameter iLimit, which denotes the maximum number of
utilised UCs, serves as a metric of the ‘local’ scope, defining
the range within which a UC is considered ‘recent’. In other
words, given that the relevance of a UC to the current query
diminishes as it becomes more distant, setting a limit excludes
prior outdated UCs from current consideration. While increas-
ing the value of iLimit allows for the inclusion of additional
information, it also diminishes the impact of Rotation due to
the precedence of iCubes over the rCube. Furthermore, while
it is feasible to set the iLimit large enough to order all the
literals, this approach is observed to be highly inefficient. The
considerable increase in cost to get one more literal reordered,
i.e., one that appears in a subsequent UC, but not in any
previous one, often necessitates thousands or even tens of
thousands of UCs. This phenomenon is demonstrated in Fig.5
for a particular formula.

The optimal value of iLimit depends, of course, on the
specific problem context and constitutes a trade-off between
literal coverage and the computational cost to achieve it.
Indeed, the results in Table V (middle column) show that the
speed to find proofs of CoreLocality depends on iLimit but
as expected, it is not monotonic. They also show that with
these low values of iLimit we are able to find proofs faster
than the previous methods. In practice the best iLimit value
can be found based on experiments, but there is also an option

27

94

114

125 128 129 130 133 134 135 136

142

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000

#(
D

is
�

n
ct

 L
it

s)

#(UC)

#(Covered) #(WholeState)

Fig. 5. Increasing the number of UCs that are intersected has a diminishing
effect on the number of distinct literals that are covered (this figure was created
based on a formula from 6s33.aig).

TABLE V
CORELOCALITY CAN FIND PROOFS EVEN FASTER. ‘WITH’ AND

‘WITHOUT’ REFERS TO THE ‘CONFLICT LITERAL’ OPTIMIZATION.

Strategy
Average time of finding proofs(s)
Without With

Natural 0.9478 0.9541
Combination(I+R) 0.7728 0.5990

Local(2) 0.6191 0.5887
Local(3) 0.6476 0.5566
Local(4) 0.5721 0.4836
Local(5) 0.6413 0.5078

to change it during run time, as we will explain later.

B. Moving forward the conflict literals

Not all literals in a UC are equal. Specifically, the last literal
added to the core, by definition, was necessary for that proof
(in other words, it is part of a minimal core). We call it the
conflict literal. During the process of getting UCs, we give
such conflict literals a higher priority by placing them in the
front of the core. For example, suppose that iCube = (1, 2, 3)
and literal 3 is the conflict literal of this clause. Then we
re-order iCube to iCube = (3, 1, 2), before we proceed
with building the assumption literal order as described earlier
(Algorithm 4). As shown in the right column of Table. V,
this small optimization accelerates, on average, the process of
finding proofs.

From here on, when we say CoreLocality, we mean Core-
Locality together with this optimization.

C. Hybrid-CAR: Combining different orderings

Empirically, the best configuration of CoreLocality varies
according to the specific problem and is hard to predict. It
is often observed that a model checking problem that can
be solved easily with one literal ordering strategy will time-

out with another. This encouraged us to research a dynamic
strategy, by which the configuration is periodically switched.

TABLE VI
THE U-SEQUENCE EXPANDS QUICKLY AND SLOWS DOWN THE ITERATION

TIME IN 6S33.AIG

Round TimeForThisRound(s) size(U)

1 0 1

2 0 2

3 0.011 15

4 0.007 20

5 0.763 823

6 7.392 5625

7 12.264 9632

8 43.158 19285

9 356.92 57263

10 >3000(Timeout) 110235

We coupled this direction with a new restart mechanism for
CAR. The U-sequence in CAR is observed to expand quickly,
resulting in increasingly longer time to extend a new O frame.

Taking a closer look at the particular case shown in Table
VI, it can finish the first five rounds within 1 second when
the size of the U-sequence is moderate, but then gets stuck
in the 10th round, where it spends more than 50 minutes.
Indeed, all the states in the U frame are explored (see line
5 in Algorithm 1) before a new O frame can be opened in
line 24. Perhaps resetting the U frame and progressing with a
different literal ordering can converge faster.

Algorithm 5 shows our implementation of Hybrid-CAR,
based on the observations above. The only difference between
Hybrid-CAR and CAR falls in the dotted rectangle. A timer is
kept in the SAT solver, starting at the beginning, to calculate
the time consumption. Once it exceeds the time limit, it
triggers the restart procedure. In the restart procedure, it only
keeps the states in the lowest level in the U -sequence, clears
all the others, and switches the reordering configuration. After
that, it resets the timer, jumps out of the current loop, and
starts searching with a new configuration from the beginning.
In the getNextConfig procedure, we employ a simple strategy
to change the demarcation of locality: increase the number of
iLimit by one. Finally, to preserve completeness, we give the
option to increase the time limit each time restart is called.

V. EXPERIMENTS

A. Setup

Our experiments focused on bug-finding only, and accord-
ingly we implemented our suggested algorithms on top of
SIMPLECAR [24], [33], which is an implementation of the
CAR algorithm, in its best version for bug-finding [15]. We
compared ourselves to the best public BMC implementation
(the one in ABC-BMC [9]), and the best combination of
CAR and BMC in [38]. Our evaluation was based on 438

Algorithm 5: Hybrid-CAR.
Input: A transition system Sys = (V, I, T) and a

safety property P , time limit to restart
TimeLimit

Output: ‘Safe’ or (‘Unsafe’ + a counterexample)
1 if SAT (I ∧ ¬P) then return ‘Unsafe’
2 U0 := I , O0 := ¬P ;
3 while true do
4 Otmp := ¬I
5 while state := pickState(U) is successful do
6 stack := ∅
7 stack.push(state, |O| − 1)
8 while |stack| ≠ 0 do
9 (s, l) := stack.top()

10

if timeExceed(TimeLimit) then
conf := getNextConfig()
restart();

11 if l < 0 then return ‘Unsafe’
12 ŝ = Reorder (s, l + 1, conf)
13 if SAT (ŝ, T ∧O′

l) then
14 ... ▷ Same as in original CAR

15 ...

benchmarks2 in the Aiger [11] format from the single safety
property track of the 2015 [18] and 2017 [19] Hardware Model
Checking Competition (HWMCC [7])3, which is consistent
with the benchmark set of [38]. All the counterexamples found
were successfully verified with the third-party tool aigsim
that comes with the Aiger package [5]. All the artifacts are
available in Github [13].

We ran the experiments on a cluster of Linux servers, each
equipped with an Intel Xeon Gold 6132 14-core processor at
2.6 GHz and 96 GB RAM. The version of the operating system
is Red Hat 4.8.5-16. For each running instance, the memory
was limited to 8 GB; if not otherwise specified, the time was
limited to 1 hour.

The following questions guided our evaluation:

• Q1: How does CoreLocality perform when compared
to the present best reordering strategy in CAR, i.e.,
Intersection + Rotation?

• Q2: How useful can it be to integrate CoreLocality to
the best CAR variants for bug-finding, i.e., the three
presented in [38]?

• Q3: How does Hybrid-CAR perform when compared to
the state-of-the-art bug-finding (unsafe checking) algo-
rithms?

2Results of these benchmarks are either known to be unsafe or remain
unknown.

3These are the last two years of HWMCC using the AIGER format. Since
2019 [20], the official format switched to a word-level format BTOR [10],
[28].

A1. CoreLocality VS. Intersection + Rotation. The previous
literal-ordering strategy for CAR, namely the combination of
Intersection and Rotation as published in [15], is very close
to CoreLocality when iLimit is set to one (‘Local-1’), except
that CoreLocality introduces a reordering inside the UCs (see
Sec. IV-A). Recall that in Sec. III we presented empirical
evidence that confirms independently of [15] that these two
strategies improve the empirical results.

146 146
149 149

155 154 153
156 155

0 0 0 0
1

0 0 0
1

0

2

4

6

8

10

140

142

144

146

148

150

152

154

156

158

Base Local-1 Local-2 Local-3 Local-4 Local-5 Local-6 Local-7 Local-8

So
lv

ed
 C

o
u

n
t

Different Strategies

SingleStrategy UniquelySolved

Fig. 6. Results on different reordering strategies, in terms of the total solved
instances. In the figure, ‘Base’ refers to the combination of Intersection and
Rotation, ‘Local-i’ (1 ≤ i ≤ 8) represents the CoreLocality strategy with
iLimit = i.

As is shown in Figure 6, the performance of CoreLocality
with 1 < iLimit ≤ 8 outperforms that of the base strategy.
The peak performance occurs with iLimit = 7, which solves
156 cases in total and obtains a 7% improvement compared
to the prior best strategy (Base) in [15]. The various strategies
solve different cases, as is evident by looking at the graphs
depicting the virtual best solver, with and without the base. No
instance is uniquely solved by Base, indicating that a Local
portfolio can cover all the cases.

Increasing the number of solved cases, even by a few
instances, is important in light of the decades of research and
development of model checkers.

4,826.65 4,825.84

4,787.44
4,773.95

4,675.65
4,687.55

4,702.04

4,657.18
4,672.30

4550

4600

4650

4700

4750

4800

4850

Base Local-1 Local-2 Local-3 Local-4 Local-5 Local-6 Local-7 Local-8

Pa
r-

2
(s

)

Different Strategies

Fig. 7. Results on different reordering strategies, using the Par-2 score.

A comparison of the run time of the different strategies is
shown in Figure 7. We rank them using the Par-2 score, which
is calculated by the average time consumption of all cases
while doubling the run time of instances that timed out. This
is a common factor measured in the SAT community [31].
The figure illustrates that CoreLocality with iLimit > 1

151

155

161

151

155

160

149

160

163

147

156
158

149

157
159

148

158
156

146
145

157

150

146

156

135

140

145

150

155

160

165

KCAR-5 BICAR-30 BAC-1500

base Local-1 Local-2 Local-3 Local-4 Local-5 Local-6 Local-7

Fig. 8. Results of integrating CoreLocality into KCAR-5, BICAR-30, and
BAC-1500 with iLimit ranging from 1 to 7.

consumes less time than Base. It is also apparent that there is
a correlation between the number of solved instances and the
total time consumption. CoreLocality outperforms the Base
strategy on both the number and time of solved cases. A
detailed pairwise comparison between the peak and Base is
shown on the right.

10 1 100 101 102 103 104

Base (baseline)
10 1

100

101

102

103

104

Lo
ca

l-7

Notably, the performance
of CoreLocality with dif-
ferent configurations is not
correlated to the value of
iLimit. This is consistent
with our discussion in Sec-
tion IV-A, that increasing
the limit does not have a
monotonic effect.
A2. The effect of CoreLo-
cality on the CAR +BMC
combination of [38]. We
also implemented and evaluated CoreLocality on top of the
three best combinations between CAR and BMC, i.e., BAC-
1500, BICAR-30, and KCAR-5, from [38]. The results are
shown in Figure 8. Generally speaking, CoreLocality can be
helpful for BICAR-30 and BAC-1500 to solve more instances
when iLimit = 2 (2 and 5 more instances, respectively),
though it seems to be detrimental in other cases.

162
161

165
166

165
163

161

159

146

140

145

150

155

160

165

170

180 240 300 360 420 480

Restart Time Limit(s)

HybridCAR BAC-1500 ABC-BMC simpleCAR

Fig. 9. Comparison on Hybrid-CAR with different restarting limits to BAC-
1500, ABC-BMC, as well as the original SIMPLECAR. Time limit is 1 hour.
The X-axis represents different restarting limits.

A3. Hybrid-CAR VS. state-of-the-art bug-finding algo-
rithms. We compared Hybrid-CAR to the original SIMPLE-

166
167

169 169 169 169

146 146
148 148

149 149

161
163

167 167 167 167

159

163
164 164 164

165

140

145

150

155

160

165

170

1 2 3 4 5 6 Time(H)

Hybrid-CAR-360 simpleCAR BAC-1500 ABC-BMC

Fig. 10. Comparison on Hybrid-CAR with different restarting limits to the
original SIMPLECAR, ABC-BMC, and BAC-1500, the latter two of which
are shown to be the state of the art in [38]. In the figure, Hybrid-CAR-360
refers to Hybrid-CAR with the restart limit set to 360 seconds. Timeout is up
to 6 hours. The X-axis represents CPU running time.

146

166

159

161

155
151

184
178
178

90

100

110

120

130

140

150

160

170

180

190

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

o

f
B

en
ch

m
ar

ks
 S

o
lv

ed

CPU Time(s)

simpleCAR 146
HybridCAR 166
ABC-BMC 159
BAC 161
BICAR 155
KCAR 151
VBS 184
VBS without HybridCAR 178
HybridCAR+BMC 178

Fig. 11. Comparison of run-time performance among different model check-
ers. VBS represents the virtual best, i.e., parallel running all and taking the
best.

CAR, BAC-1500 (the best solution shown in [38]) and ABC-
BMC on bug finding4. To fully evaluate the scalability of these
different approaches, we ran the experiments with two separate
time limits: 1 hour and 6 hours. The corresponding results are
shown in Figure 9 (1 hour) and Figure 10 (6 hours).

It turns out that regardless of the time limit for restart,
Hybrid-CAR performs better than the competitors. In the one-
hour setting, the best version of Hybrid-CAR, in which the
restart is invoked every 6 minutes, solves 166 cases in total,
which is seven more than that solved by ABC-BMC, and
20 more than that solved by the original SIMPLECAR. In
the 6-hour setting, this version of Hybrid-CAR solves 169
cases, which is 20 more than the original SIMPLECAR, and
outperforms the competition. Note that Hybrid-CAR solves
more instances in just one hour (166) than that solved by
ABC-BMC in 6 hours (165).

Figure 11 also includes the comparison among the best
version of Hybrid-CAR and the other two combinations of
BMC and CAR presented in [38], i.e., BICAR and KCAR. The

4While PDR is good at proving safe, it is not as good in finding bugs.
The best implementations of PDR, to our knowledge, namely ABC-PDR and
NUXMV-IC3, cannot solve more than 140 cases within the time limit. So do
other variants such as AVY [35], [36] and QUIP [22]. For this reason they
are not included in the comparison.

TABLE VII
UNIQUELY SOLVED INSTANCES FOR EACH ALGORITHM.

UNIQUELY
SOLVED

UNIQUELY
SOLVED

(COMPARED
TO ABC-BMC)

UNIQUELY
SOLVED

(COMPARED
TO BAC)

simpleCAR 0 13 4

Hybrid-CAR 6 19 11

BAC 4 17 0

ABC-BMC 5 0 15
BICAR 0 5 10

KCAR 1 10 6

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

AB
C-

BM
C

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

BA
C

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

BI
CA

R

100 101 102 103 104

HybridCAR(baseline)
100

101

102

103

104

KC
AR

Fig. 12. Pairwise Comparison of Hybrid-CAR and competitors. Timeout
instances in either are marked in red.

timeout here is one hour. Hybrid-CAR performs better than all
the other methods. In terms of the number of solved unsafe
instances, Hybrid-CAR is 166, followed by BAC (161), ABC-
BMC (159), BICAR (155), KCAR (151), and the original
CAR (146). In particular, Hybrid-CAR can solve six unique
benchmarks, i.e., benchmarks that cannot be solved by all the
other methods.

Table VII shows the uniquely solved instances of each
technique (i.e. that no other tool can solve), and, in parenthesis,
in comparison to ABC-BMC and BAC, e.g., Hybrid-CAR
solves 19 and 11 cases that cannot be solved by these two
tools, respectively. Moreover, we note that a portfolio of only
Hybrid-CAR and ABC-BMC can solve 178 instances, almost
reaching the virtual best results (184) that a portfolio of all
these algorithms can solve. A detailed pairwise comparison is
shown in Fig. 12.

VI. CONCLUSION

In this paper, we revisited the assumption literal ordering
strategies presented in [15]. We hypothesized that Intersection
works because of what we call core locality, which means
that similar cores help the SAT solver find proofs faster.
Our empirical data, as we showed, supports this claim. Both
Intersection and Rotation determine only a part of the literal
order, hence the order of most of the assumptions is left
arbitrary. Our improved strategy, CoreLocality (Sec. IV-A),
generalizes Intersection and orders a larger part of the assump-
tions sequence, while improving the core locality. Together
with prioritizing conflict literals (Sec. IV-B) they shorten
rather significantly the time it takes the SAT solver to find
proofs. We also presented a hybrid approach called Hybrid-
CAR (Sec. IV-C), which switches between different configu-
rations of CoreLocality during run time, while resetting the
U sequences. Our results show that these strategies perform
better on average than the reordering strategies of [15] and also
better than the various integrations of CAR with BMC [38]. In
particular, Hybrid-CAR is able to outperform all bug-finding
model-checking algorithms off-the-shelf. It is left for future
work to try these strategies on PDR.

REFERENCES

[1] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving
glucose for incremental SAT solving with assumptions: Application to
mus extraction. In Matti Järvisalo and Allen Van Gelder, editors, Theory
and Applications of Satisfiability Testing – SAT 2013, pages 309–317,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[2] Gilles Audemard and Laurent Simon. On the glucose SAT solver.
International Journal on Artificial Intelligence Tools, 27(01):1840001,
2018.

[3] Alessandro Bernardini, Wolfgang Ecker, and Ulf Schlichtmann. Where
formal verification can help in functional safety analysis. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
1–8, 2016.

[4] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Proceedings
of Design Automation Conference (DAC), pages 317–320, 1999.

[5] Armin Biere. AIGER Format. http://fmv.jku.at/aiger/FORMAT.
[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.

Symbolic model checking without BDDs. In W. Rance Cleaveland,
editor, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 193–207, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[7] Armin Biere, Tom van Dijk, and Keijo Heljanko. Hardware model
checking competition 2017. In 2017 Formal Methods in Computer Aided
Design (FMCAD), pages 9–9, 2017.

[8] Aaron R. Bradley. SAT-based model checking without unrolling. In
Ranjit Jhala and David Schmidt, editors, Verification, Model Checking,
and Abstract Interpretation, pages 70–87. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[9] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, pages 24–40, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[10] Robert Brummayer, Armin Biere, and Florian Lonsing. Btor: bit-
precise modelling of word-level problems for model checking. In
Proceedings of the joint workshops of the 6th international workshop
on satisfiability modulo theories and 1st international workshop on bit-
precise reasoning, pages 33–38, 2008.

[11] Robert Brummayer, Alessandro Cimatti, Koen Claessen, Niklas Een,
Marc Herbstritt, Hyondeuk Kim, Toni Jussila, Ken McMillan, Alan
Mishchenko, Fabio Somenzi, et al. The aiger and-inverter graph (aig)
format version 20070427. In The AIGER And-Inverter Graph (AIG)
Format Version 20070427, 2007.

[12] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992.

[13] Artifacts. https://github.com/AnonymousAccO-O-O/HybridCAR.
[14] Yibo Dong, Xiaoyu Zhang, Yicong Xu, Chang Cai, Yu Chen, Weikai

Miao, Jianwen Li, and Geguang Pu. Lightf3: A lightweight fully-process
formal framework for automated verifying railway interlocking systems.
New York, NY, USA, 2023. Association for Computing Machinery.

[15] Rohit Dureja, Jianwen Li, Geguang Pu, Moshe Y. Vardi, and Kristin Y.
Rozier. Intersection and rotation of assumption literals boosts bug-
finding. In Supratik Chakraborty and Jorge A. Navas, editors, Verified
Software. Theories, Tools, and Experiments, pages 180–192, Cham,
2020. Springer International Publishing.

[16] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient im-
plementation of property directed reachability. In Proceedings of
the International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11, pages 125–134, Austin, Texas, 2011. FMCAD
Inc.

[17] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of
Satisfiability Testing, pages 502–518, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[18] HWMCC 2015. http://fmv.jku.at/hwmcc15/.
[19] HWMCC 2017. http://fmv.jku.at/hwmcc17/.
[20] HWMCC 2019. https://fmv.jku.at/hwmcc19/.
[21] IC3Ref. https://github.com/arbrad/IC3ref.
[22] Alexander Ivrii and Arie Gurfinkel. Pushing to the top. In Proceedings

of the 15th Conference on Formal Methods in Computer-Aided Design,
FMCAD ’15, pages 65–72, Austin, Texas, 2015. FMCAD Inc.

[23] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Computing Surveys (CSUR), 41(4):1–54, 2009.

[24] Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and
Moshe Y. Vardi. SimpleCAR: An efficient bug-finding tool based
on approximate reachability. In Hana Chockler and Georg Weis-
senbacher, editors, Computer Aided Verification, pages 37–44, Cham,
2018. Springer International Publishing.

[25] Jianwen Li, Rohit Dureja, Geguang Pu, Kristin Yvonne Rozier, and
Moshe Y Vardi. SimpleCAR: An efficient bug-finding tool based on
approximate reachability. In Computer Aided Verification: 30th Inter-
national Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part II 30, pages 37–44. Springer, 2018.

[26] Jianwen Li, Shufang Zhu, Yueling Zhang, Geguang Pu, and Moshe Y.
Vardi. Safety model checking with complementary approximations. In
Proceedings of the 36th International Conference on Computer-Aided
Design, ICCAD ’17, pages 95–100. IEEE Press, 2017.

[27] K. L. McMillan. Interpolation and SAT-based model checking. In War-
ren A. Hunt and Fabio Somenzi, editors, Computer Aided Verification,
pages 1–13. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[28] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 ,
btormc and boolector 3.0. In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification, pages 587–595, Cham, 2018.
Springer International Publishing.

[29] Chanseok Oh. Between sat and unsat: The fundamental difference in
CDCL SAT. In Marijn Heule and Sean Weaver, editors, Theory and
Applications of Satisfiability Testing – SAT 2015, pages 307–323, Cham,
2015. Springer International Publishing.

[30] Kristin Y. Rozier, Natarajan Shankar, Cesare Tinelli, and Moshe Vardi.
Developing an open-source, state-of-the-art symbolic model-checking
framework for the model-checking research community. In 2023 Formal
Methods in Computer-Aided Design (FMCAD), pages 1–1, 2023.

[31] The international SAT competitions. http://www.satcompetition.org/.
[32] Tobias Seufert, Christoph Scholl, Arun Chandrasekharan, Sven Reimer,

and Tobias Welp. Making progress in property directed reachability.
In Bernd Finkbeiner and Thomas Wies, editors, Verification, Model
Checking, and Abstract Interpretation, pages 355–377, Cham, 2022.
Springer International Publishing.

[33] SimpleCAR. https://github.com/lijwen2748/simplecar/releases/tag/v0.1.
[34] Muralidhar Talupur. Hardware model checking: Status, challenges, and

opportunities. In 2011 Formal Methods in Computer-Aided Design
(FMCAD), pages 154–154, 2011.

[35] Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie
Gurfinkel. Interpolating strong induction. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification, pages 367–385, Cham,
2019. Springer International Publishing.

[36] Yakir Vizel and Arie Gurfinkel. Interpolating property directed reach-
ability. In Armin Biere and Roderick Bloem, editors, Computer
Aided Verification, pages 260–276, Cham, 2014. Springer International
Publishing.

[37] Yechuan Xia, Anna Becchi, Alessandro Cimatti, Alberto Griggio, Jian-
wen Li, and Geguang Pu. Searching for i-good lemmas to accelerate
safety model checking. In Constantin Enea and Akash Lal, editors,
Computer Aided Verification, pages 288–308, Cham, 2023. Springer
Nature Switzerland.

[38] X. Zhang, S. Xiao, J. Li, G. Pu, and O. Strichman. Combining
bmc and complementary approximate reachability to accelerate bug-
finding. In Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, ICCAD ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

http://fmv.jku.at/aiger/FORMAT
https://github.com/AnonymousAccO-O-O/HybridCAR
http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc17/
https://fmv.jku.at/hwmcc19/
https://github.com/arbrad/IC3ref
http://www.satcompetition.org/
https://github.com/lijwen2748/simplecar/releases/tag/v0.1

Yibo Dong received the B.S. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2021. He
is pursuing an M.S. degree with the Software En-
gineering Institute at East China Normal University,
Shanghai. His main research interest lies in formal
verification, especially model checking.

Yu Chen received her B.S. degree from Shanghai
University, Shanghai, China, in 2020 and her M.S.
degree from East China Normal University, Shang-
hai, China, in 2023. She is currently a teaching
assistant at Chuzhou University, Anhui, China. Her
main research interest lies in temporal logic and
model checking.

Jianwen Li He received his Ph.D. degree from the
Software Engineering Institute, East China Normal
University, Shanghai, China, in 2014. He is currently
a Research Professor at the Software Engineering
Institute, East China Normal University. His research
interests include formal verification, logic and au-
tomata theory.

Geguang Pu received his B.S. degree in mathemat-
ics from Wuhan University, Wuhan, China, in 2000,
and his Ph.D. degree in mathematics from Peking
University, Beijing, China, in 2005. He is currently
a Professor at the Software Engineering Institute,
East China Normal University, Shanghai, China. He
has published over 100 publications on software
engineering and system verification, including ICSE,
FSE, ASE, and CAV. His research interests include
program testing and reliable AI systems. Prof. Pu
served as a PC member for more than 20 interna-

tional conference committees.

Ofer Strichman Prof. Ofer Strichman earned his
PhD in 2001 from the Weizmann Institute, where
he worked, under the supervision of Amir Pnueli, on
translation validation for compilers, Bounded Model
Checking, and other topics in formal verification. He
then was a post-doc in Carnegie Mellon University
in Ed Clark’s group, where he mostly worked on
model-checking, learning, predicate abstraction and
decision procedures. Prof. Strichman published two
books: “Decision procedures – an algorithmic point
of view” together with Daniel Kroening, and “Effi-

cient decision procedures for validation”, edited two others and coauthored
more than 100 peer-reviewed articles, mostly in formal verification and SAT.
In the SAT field he is mostly known for his contributions to linear-time proof
manipulations, exploiting symmetries and incremental satisfiability. In formal
verification he is mostly known for his invention of ‘regression verification’
and various decision procedures, mostly for equalities with uninterpreted
functions.

Prof. Strichman won the 2021 CAV award “for pioneering contributions
to the foundations of the theory and practice of satisfiability modulo theories
(SMT)”.

	Introduction
	Preliminaries
	Boolean Transition System
	Safety Model Checking and Reachability Analysis
	SAT Solving and Unsatisfiable Cores
	Complementary Approximate Reachability (CAR)

	Literal Reordering Strategies: prior work and insights
	Literal Ordering Strategies: new approaches
	Literal reordering with CoreLocality
	Moving forward the conflict literals
	Hybrid-CAR: Combining different orderings

	Experiments
	Setup

	Conclusion
	References
	Biographies
	Yibo Dong
	Yu Chen
	Jianwen Li
	Geguang Pu
	Ofer Strichman

