
LightF3: A Lightweight Fully-Process Formal Framework for
Automated Verifying Railway Interlocking Systems
Yibo Dong1†, Xiaoyu Zhang1†, Yicong Xu1, Chang Cai1, Yu Chen1, Weikai Miao1

Jianwen Li1∗, and Geguang Pu1,2∗
1Software Engineering Institute, East China Normal University, Shanghai, China

2Shanghai Trusted Industrial Control Platform Co., Ltd, Shanghai, China

ABSTRACT

Interlocking has long played a crucial role in railway systems. Its
functional correctness, particularly concerning safety, forms the
foundation of the entire signaling system. To date, numerous efforts
have been made to formally model and verify interlocking systems.
However, two main problems persist in most prior work: (1) The
formal description of the interlocking system heavily depends on
reusing existing models, which often results in overgeneralization
and failing to fully utilize the intrinsic characteristics of interlocking
systems. (2) The verification techniques of current approaches may
quickly become outdated, and there is no adaptable method to
integrate state-of-the-art verification algorithms or tools.

To address the above issues, we present LightF3, a lightweight
and fully-process formal framework for modeling and verifying
railway interlocking systems. LightF3 provides RIS-FL, a formal
language based on FQLTL (a variant of LTL) to model the sys-
tem and its specifications. LightF3 transforms the RIS-FL model
automatically to the aiger model, which is the mainstream input
of state-of-the-art model checkers, and then invokes the most ad-
vanced checkers to complete the verification task. We evaluated
LightF3 by testing five real station instances from our industrial
partner, demonstrating its effectiveness as a new framework. Addi-
tionally, we analyzed the statistics of the verification results from
different model-checking techniques, providing useful conclusions
for both the railway interlocking and formal methods communities.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.

KEYWORDS

Formal Methods, Interlocking Systems, Model Checking

† Both authors contributed equally to this paper.
∗ Corresponding Authors: Jianwen Li, Geguang Pu ({jwli, ggpu}@sei.ecnu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613874

Human–Computer Interaction

Physical Devices

Interlocking System

Electronic Units

Figure 1: Electronic Based Interlocking system

1 INTRODUCTION

An interlocking system is a control system responsible for guiding
the trains safely through the railway network in accordance with
traffic regulations and disciplines. By continuously maintaining the
state of devices , the interlocking system determines whether it is
safe to perform certain operations, such as allowing the train to
enter a specific track. Additionally, by controlling active elements,
the interlocking system serves as a vital interface between trains
and other railway components (as shown in Fig. 1). Therefore, the
functional correctness of the interlocking system, especially safety
correctness, is crucial to the entire signal system and must meet a
high safety integrity level (SIL4) [21].

Despite the importance of ensuring safety, many railway com-
panies still rely on manual testing and simulation due to a lack of
efficient and cost-effective mechanisms for verifying safety proper-
ties. Though formal methods [49] have shown promise, the complex
professional background and universal confidentiality of the rail-
way industry make it difficult to apply these techniques. As a result,
most research [12, 48] focuses on specific station cases with mod-
erate scale or simple properties.

Moreover, prior works on formally verifying interlocking sys-
tems have mainly adopted fixed verifiers and attempted to reuse
existing models like SMV [11] or transform into them [16], typi-
cally by feeding them into third-party IDEs [24]. This approach
is difficult to extend and eliminates the possibility of reserving
instance-oriented quantifiers along with past operators, which are
both crucial components for complex practical properties not sup-
ported in existing models. Safety properties in interlocking sys-
tems, originating from a common discipline, distinguish themselves
from those in other domains in that they are highly homogeneous

https://doi.org/10.1145/3611643.3613874

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong et al.

Input

Data

Model Checking
Portfolio

Formal Model

Safe

Counter Example

Automated Semi-AutomatedFormal Transit Guide

RIS-FL Model

Figure 2: The Schema of LightF3

both inter-station and intra-station. Manually writing repetitive
and error-prone low-level properties falls far behind writing a few
generic properties and instantiating them according to detailed data.
Furthermore, without past operators, time-sensitive properties may
be beyond expression. Regarding verification techniques, existing
verifiers generally employ bounded model checking [6] as the core
technique. While this approach is efficient in finding shallow bugs,
state-of-the-art verifiers like CAR [40] and IC3/PDR [10, 17, 20]
have demonstrated superior performance under different circum-
stances. However, there is currently no convenient way to plug
them in or reconfigure them according to the verification result.

In our opinion, the model of the interlocking system can be rep-
resented as an acyclic graph constructed based on the topology of
the track layout, along with a set of rules that describe the rela-
tionships among the devices. The devices, each having unique IDs
and various attributes, are represented as vertices, while the rules
are represented as edges connecting the vertices. For example, ‘A
switch 𝑠1 is in the track 𝑡1’ can be expressed as the ‘𝐵𝑒𝑙𝑜𝑛𝑔𝑇𝑜𝑇𝑟𝑎𝑐𝑘’
attribute of 𝑠1 being ‘𝑡1’, and the corresponding rule ‘𝑠1 should be
in track 𝑡1’ will then be specified as ‘𝑠1 .𝐵𝑒𝑙𝑜𝑛𝑔𝑇𝑜𝑇𝑟𝑎𝑐𝑘 == 𝑡1’. On
this basis, the interlocking system can be seen as a graph with rich
information stored in its vertices. Alternatively, one can regard it
as a circuit-like system with a moderate scale. The verification of
such system is a prevalent subject in hardware model checking.

We propose a framework called LightF3 for automated verifi-
cation of railway interlocking systems (Fig. 2). The term "Light"
indicates that it does not involve translation into a more complex
and general model; it also reduces the difficulty of writing formal
properties, making it easy for production personnel to use. Addi-
tionally, plug-and-play is supported for any aiger-based work-of-art
verifier, making the cost of trying out the latest verifier insignificant.
The triple "F" denotes "Fully-process Formal Framework," which is
its distinguishing feature. After writing the RIS-FL model, all subse-
quent procedures, including model transformation and verification,
are formal. Based on the recently proposed Finite Quantifier Linear
Temporal Logic(FQLTL) [15], we establish a formal language called
RIS-FL (short for Railway Interlocking System Formal Language)
to describe the model and write generic properties. Furthermore,
we provide users with a user-friendly interface in LightF3. These
generic properties do not specify particular devices and should be
written in accordance with traffic regulations. As a result, they can
be shared among different stations. Concrete properties are gener-
ated by instantiating them with detailed station-specific application
data for further verification. With an extensible and re-configurable

verification portfolio, different properties can be efficiently verified
based on their aptitude.

We invited our industrial partners to try out LightF3, and with
a moderate amount of effort to learn how to write formal specifica-
tions and translate their station data, they were able to successfully
verify practical stations of various sizes. The largest station had
around sixty tracks and fifty switches with over 200 routes. Through
the use of LightF3, we helped them discover errors in their prior
natural language specifications and encouraged them to clarify rel-
evant concepts for their employees. Overall, our partnership with
them was a success, and they were pleased with the results.

Novelty.We provide the following contributions:

• A fully-process formal framework LightF3 that :
– proposes a formal language RIS-FL and allows writing
formal descriptions at a moderate cost.

– effectively transits to model checking problem.
– can carry any latest aiger-based [5] verifiers to solve in-
terlocking system problems.

• Investigate the performance of various model-checking tech-
niques in interlocking contexts, conclusions of which benefit
both industry and academia.
• Pose an example benchmark, which takes an interlocking
system as the background, to facilitate researchers who are
interested in practical interlocking problems.

2 RELATEDWORK

There have been numerous efforts to apply formal methods and
tools for ensuring the correctness of railway system designs [23, 49].
In the early days, general-purpose models such as UML [42], state
machines (or automata) [14], and Petri-Nets [41] were used, which
posed scalability issues. More successful applications emerge by
introducing the B method [3], SMV [11] as the modeling language,
with which powerful tools like ProB [36] and NuSMV [16] can
verify the obtained models in an efficient way. Nevertheless, these
methods are still too generic to depict dedicated features of inter-
locking systems. For example, the B method cannot handle the
temporal information well while SMV lacks the (direct) support
for metric temporal information and finite domains. For existing
domain-specific solutions, SafeCap [29–31] aims at modeling the
whole railway network, making it redundant to use on interlock-
ing systems. Also, railML [13] is a sufficient domain language to
describe an interlocking system, while it is semi-formal [45] and
proposes to utilize SAML [26], which is a formal language with
limited support for temporal reasoning, to formalize railML models.
Finally, the ladder logic [8, 33] is widely used in commercial tools
like Prover ILock [9] and SCADE [34], which may be the best option
to model interlocking systems to date. However, Ladder logic may
express limited temporal options by using the latch variables only.

Towards the specifications of interlocking systems, previous
worksmainly use pure propositional logic [19] or variants of LTL [38,
46] to formalize from different levels. However, most of them do not
consider extending LTL to describe generic properties suitable for
the same types of devices in the system, i.e., by introducing quan-
tifiers over variables. Although [27] allows the quantifiers, they
can be only affiliated to the bound variables for bounded model

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

checking. Also, the LTL versions supported in the SMV language
do not include quantification.

Model checking [18] and theorem proving [4] are twomain verifi-
cation techniques for interlocking systems. While theorem-proving
B models have gained success in practice, a lot of artificial efforts
are required to complete the proving. Meanwhile, model checking
can be achieved automatically once the model and properties are
prepared, which is more promising in the view of industrial appli-
cations. Indeed, series of works [27] rely on model checking tech-
niques like BMC [6], K-induction [48] and IC3/PDR [17] to verify
the interlocking system. However, most of them consider integrat-
ing such algorithms inside their methodology, running upon their
self-defined models. The cost can become heavy when considering
integrating new model-checking techniques instead of leveraging
state-of-the-art third-party model checkers, e.g., SimpleCAR [37],
IC3-ref [1], AVY [47] etc.

Our framework LightF3 is distinguished from others in the fol-
lowing aspects. (1) LightF3 uses the RIS-FL modeling language
which has FQLTL underlined and is more dedicated to modeling
railway systems rather than B, SMV, and SAML languages as well
as the Ladder Logic; (2) Once the RIS-FL model is created, the
left verification process is fully automated, including the prop-
erty/constraint instantiation that is specific to interlocking systems;
(3) Finally, LightF3 is lightweight and flexible because it leverages
the Aiger [5] format as the input for model checking, which is
the mainstream nowadays and therefore is easy to import new
model-checking techniques as an aid to efficient verifying.

3 PRELIMINARIES

3.1 First-Order Logic

The syntax of first-order logic is defined relative to a signature
𝜎 , which consists of a set of constant symbols, a set of function
symbols, and a set of predicate symbols. Each function and predicate
symbol has an 𝑎𝑟𝑖𝑡𝑦 𝑘 > 0. Formally, a first-order logic formal 𝜙
has the form of

𝜙 ::= 𝑡 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | ∃𝑥 𝜙 | ∀𝑥 𝜙

where the term 𝑡 can be a variable, constant symbol, or k-ary func-
tion symbol 𝑓 (𝑡1, . . . , 𝑡𝑘). The symbol ∃ and ∀ refer to existential
and universal quantifier separately.

Given a signature 𝜎 , a 𝜎-structure A consists of:
• a non-empty set𝑈A called the universe of the structure;
• for each 𝑘-ary predicate symbol 𝑃 in 𝜎 , a 𝑘-ary relation
𝑃A ⊆ 𝑈A × · · · ×𝑈A︸ ︷︷ ︸

𝑘

;

• for each 𝑘-ary function symbol 𝑓 in 𝜎 , a 𝑘-ary relation 𝑓A :
𝑈A × · · · ×𝑈A︸ ︷︷ ︸

𝑘

→ 𝑈A ;

• for each constant symbol 𝑐 , an element 𝑐A of𝑈A ;
• for each variable 𝑥 an element 𝑥A of𝑈A .

Given a structureA, variable 𝑥 , and 𝑎 ∈ 𝑈A , we define the struc-
tureA[𝑥 ↦→𝑎] to be exactly the same asA except that 𝑥A[𝑥 ↦→𝑎] = 𝑎.
We define the value AJ𝑡K of each term 𝑡 as an element of the uni-
verse𝑈A inductively as follows:

• For a constant symbol 𝑐 we define AJ𝑐K def
= 𝑐A ;

• For a variable 𝑥 we define AJ𝑥K def
= 𝑥A ;

• For a term 𝑓 (𝑡1, ..., 𝑡𝑘), where 𝑓 is a 𝑘-ary function symbol
and 𝑡1, ..., 𝑡𝑘 are terms, we define
AJ𝑓 (𝑡1, ..., 𝑡𝑘)K

def
= 𝑓A (AJ𝑡1K, ...,AJ𝑡𝑘K).

We define the satisfaction relationA ⊨ 𝜙 between a 𝜎-structure
A and 𝜎-formula 𝜙 by induction over the structure of formulas.
• A ⊨ 𝑃 (𝑡1, ..., 𝑡𝑘) iff (AJ𝑡1K, . . . ,AJ𝑡𝑘K) ∈ 𝑃A ;
• A ⊨ 𝜙1 ∧ 𝜙2 iff A ⊨ 𝜙1 and A ⊨ 𝜙2;
• A ⊨ 𝜙1 ∨ 𝜙2 iff A ⊨ 𝜙1 or A ⊨ 𝜙2;
• A ⊨ ¬𝜙1 iff A ⊭ 𝜙1;
• A ⊨ ∃𝑥 𝜙1 iff there exists 𝑎 ∈ 𝑈A such that A[𝑥 ↦→𝑎] ⊨ 𝜙1;
• A ⊨ ∀𝑥 𝜙1 iff A[𝑥 ↦→𝑎] ⊨ 𝜙1 for all 𝑎 ∈ 𝑈A ;

3.2 Linear Temporal Logic

ltl was introduced into computer science in the 1970s and is used
in various fields [24, 25, 28, 44, 50]. It uses temporal operators to
express the behavioral constraints that need to be satisfied by a
system at each moment in the past, present, and future. Let AP be a
set of atomic properties, we can define the syntax of LTL formulas:

𝜙 ::= ⊤ | ⊥ | 𝑝 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | 𝑋 𝜙1 | 𝜙1 𝑈 𝜙2 | 𝜙1 𝑅 𝜙2

where 𝑝 ∈ AP is an atomic proposition; 𝜙 is an ltl formula; ⊤,⊥
denote true and false, and 𝑋 ,𝑈 , 𝑅 are temporal operators, repre-
senting ‘Next’, ‘Until’ and ‘Release’ respectively.

In LTL, 𝑈 and 𝑅 are dual operators, which means 𝜙1𝑈𝜙2 ≡
¬(¬𝜙1𝑅¬𝜙2). Also, the following abbreviations are widely used in
LTL: 𝐹 𝑎 ≡ ⊤𝑈 𝑎 and 𝐺 𝑎 ≡ ⊥ 𝑅 𝑎.

Let Σ = 2𝐴𝑃 be the set of alphabet and a trace 𝜉 = 𝜔0𝜔1𝜔2 ... be
an infinite sequence in Σ𝜔 . For 𝜉 and 𝑘 ≥ 0 we use the following
denotations:
• 𝜉 [𝑘] : the 𝑘 th element of 𝜉
• 𝜉𝑘 = 𝜔0𝜔1 ...𝜔𝑘−1, the prefix of the trace
• 𝜉𝑘 = 𝜔𝑘𝜔𝑘+1 ..., the later part of the trace

Therefore, 𝜉 = 𝜉𝑘𝜉𝑘 . The semantics of ltl formulas with respect
to the infinite trace 𝜉 is then given by:
• 𝜉 |= ⊤ and 𝜉 ̸ |= ⊥;
• 𝜉 |= 𝑝 iff 𝑝 ∈ 𝜉 [0] where 𝑝 is an atom;
• 𝜉 |= ¬𝜙 iff 𝜉 ̸ |= 𝜙 ;
• 𝜉 |= 𝜙1 ∧ 𝜙2 iff 𝜉 |= 𝜙1 and 𝜉 |= 𝜙2;
• 𝜉 |= 𝑋 𝜙 iff 𝜉1 ⊨ 𝜙 ;
• 𝜉 |= 𝜙𝑈𝜓 iff ∃𝑖 ≥ 0, 𝜉𝑖 |= 𝜓 , and ∀0 ≤ 𝑗 < 𝑖 , 𝜉 𝑗 |= 𝜙 ;
• 𝜉 |= 𝜙𝑅𝜓 iff either ∀𝑖 ≥ 0, 𝜉1 |= 𝜓 or, ∃𝑖 ≥ 0 , 𝜉𝑖 |= 𝜙 ∧𝜓 and
∀0 ≤ 𝑗 ≤ 𝑖, 𝜉 𝑗 |= 𝜓 .

Above is the standard ltl. Now we define LTL𝑃 as LTL with
past operators, e.g., PRE and Since, so that we can make statements
on past time instants.

3.3 Model Checking

3.3.1 And-Inverter Graph. An And-Inverter Graph (AIG) is a di-
rected, acyclic graph designed to represent gate-level hardware
circuits [5]. It is considered a simple sequential hardware model,
as there are only three basic components inside an AIG, which are
AND gate, inverter and latch. To provide a compact and simple for-
mat of an AIG for model checking competition, the AIGER format
is designed.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong et al.

1

2

3

4

5

6

7

aag 4 1 1 1 2 0 1

2

4 7

6

8

6 2 5

8 6 1

(a) ASCII AIGER

6

O0L0 8

C0

10

24

0

(b) Visualization

Figure 3: Example of an AIG

Fig. 3(a) and 3(b) show the ASCII AIGER format and the repre-
sented circuit of an AIG. The first line of Fig. 3(a) is the header,
in which ‘aag’ denotes the ASCII format, and subsequent digits
represent the number of various components respectively: the sum
of all components, inputs, latches, outputs, AND gates, bad states
and invariant constraints in order. Note that each component is
assigned a positive even number as an identification, and the corre-
sponding odd number, which equals to the even number plus one, is
used to represent the component with an inverter gate. Especially,
the constants 0 and 1 are preserved to represent ⊤ and ⊥.

Beginning from Line 2, each of the inputs, latches, outputs, con-
straints, bad properties, and and-gates are listed in order. For ex-
ample, the second line says that the input is denoted as the literal
2, while the third line shows that 4 is the latch and 7 is preserved
as the value of the latch in the next cycle. More information are
referred to [5].

Besides circuits, AIG can also be used to formulate SAT and
model-checking problems. Most modern model checkers support
AIG as their input, and many other forms (like SMV [16]) can be
easily translated to AIG through tools in AIG release.

3.3.2 Model Checking Techniques. Given a transition system 𝑆𝑦𝑠 =

(𝑉 , 𝐼,𝑇) (the model) and a safety property 𝑃 , model checking an-
swers the question that whether all behaviors of the transition
system satisfy the property. If not, a trace from the initial state to
the bad state, in which the property is violated, will be returned as
a counterexample. Otherwise, an invariant containing the initial
state can be found, indicating that the model satisfies the property.

State-of-the-art model-checking techniques like BMC [7], IMC
[43], IC3/PDR [10, 17, 20] and CAR [40], are all SAT-based and
there isn’t a single technique that can dominate others. BMC is the
first technique to introduce SAT [39] into model checking and is
quite efficient in bug-finding, but it is an incomplete approach as it
can’t prove the property. IMC complements BMC by computing
interpolants and maintaining an over-approximate state sequence
inside BMC, which enables the construction of a correctness proof.
Compared to BMC and IMC, IC3/PDR and CAR only unroll the
transition relation at most once, which reduces the difficulty of a
single SAT query but increases the total amount of SAT queries.
Notably, CAR has two versions, i.e., Forward CAR and Backward
CAR, which distinguish from each other by search strategy for
the verification. Often, Forward CAR is better to prove correctness
while Backward CAR is more advantageous in finding bugs [37, 40].

3.4 Verification of Interlocking System

In railway signaling, interlocking refers to the arrangement of sig-
nal apparatus to prevent conflicting movements, such as arranging
signals and signal appliances properly. The properties in the inter-
locking system can be divided into two categories: safety properties
and liveness properties [2]. Safety properties aim to ensure that no
unsafe conditions occur, while liveness properties focus on ensur-
ing that the train eventually leaves the station. The primary goal of
interlocking is to ensure safety. Basic safety goals are usually speci-
fied at a high abstract level, and various approaches can be used to
implement them at a specific station. For a specific station, the basic
safety goals are concretized at multiple levels. For instance, abstract
safety rules are first categorized by the type of devices and then
instantiated to concrete properties of specific devices according to
the configuration data. In industrial practice, a control table [22] is
created to represent the possible operations of various components
in the railway yard and enforce the principles and constraints.

An example to define basic safety goals from Denmark [35] is:
• Trains/shunt movements must not collide.
• Trains/shunt movements must not derail.
• Trains/shunt movements must not collide with authorized
vehicles or human beings crossing the railway.
• Protect railway employees from trains.

As to formal verification, we take only the prior three goals into
consideration.

4 LIGHTF3 FRAMEWORK

In this section, we present the structure of LightF3. Firstly, we
discuss the general workflow, followed by an illustrative exam-
ple, and then introduce each component separately. The general
organization is depicted in Fig. 4.

The input of the system can be divided into five parts, as shown
in the figure. These parts are then translated to generate a RIS-
FL model, along with a station-specific domain interpretation. The
interpretation guides the instantiation of properties and constraints,
eliminating the quantifiers and creating concrete properties about
specific devices. Typically, one generic property corresponds to
several devices of the same type. These concrete properties together
with the RIS-FL model are then transformed into a common AIGER
model and passed to the model-checking portfolio. If the property
does not hold for the target device, a counterexample is generated.

4.1 Illustrating Example

We would pose an illustrating example of an interlocking system
here. The raw materials obtained in this study cannot be shared
subject to confidential agreements. Therefore, we would give a
preprocessed model and omit the detailed generation process of
domain interpretation. With an example track layout (Fig. 5), we
try to verify a simple property:

Example 4.1 (Natural Language Description). If a track that con-
tains switches is released, the following properties should hold:
• The track is logically clear for at least 3 seconds.
• The track is in route released state.
• The track is not route locked or occupied.

And the relevant model may look like this:

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

System Design

Specification

Environment
Constraint

Track Layout

Configuration
Data

Input

System

Property

Constraint

RIS-FL Model

Bit-level
Properties

and
Constraints

Domain
Interpretation

Aiger Model Model Checking
Portfolio Result

Safe

 Counter Example

CAR

IC3/PDR

BMC

IMC

···

Instantiate

Figure 4: LightF3 Framework Work-Flow

Signal
Track
SwitchT1P1

T3 P6P3

P2

P4

T2

T4

P5

Figure 5: An Example of Station Layout

Example 4.2 (Relevant Input Model).

• P1-R = (P1-LCE & ¬P1-RR & P1-RLO)
• P3-R = (P3-LCE & ¬P3-RR & P3-RLO)
• P1-LCE = GLOBAL [0,3](P1-A)
• P3-LCE = GLOBAL [0,3](P3-A)
• P1-RR = (P1-B & P1-C)
• P3-RR = (P3-B & P3-C)
• P1-RLO = (¬P1-D & P1-E ∥ P1-F & P1-RLO & ¬P1-LCE)
• P3-RLO = (¬P3-D & P3-E ∥ P3-F & P3-RLO & ¬P3-LCE)
• ...

This is a generic property that all tracks should follow, therefore
the outer wrapper of the property would be like “ALL track (. . .)”,
which is a syntax sugar. Besides, taking future debugging into con-
sideration, it is suggested to split the property into sub-properties
to avoid unrevealed failure during calculation because of the short
circuit characteristics (yet this is not a must). Therefore, the formal
properties would be:

Example 4.3 (Generic Properties in RIS-FL).

• SubRequirement-1 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track)→ LogicallyClearElapsed(track));
• SubRequirement-2 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track)→ RouteReleased(track));
• SubRequirement-3 := ALL track (
SOME switch (BelongToTrack(switch,track)) &
Released(track)→ ¬ RouteLockedOccupied(track));

Then the formula would be instantiated according to the domain
interpretation. As shown in topology (Fig. 5), the whole set of tracks

Table 1: belongToTrack

switch track

... ...
P1 T1
P3 T3
... ...

Table 2: State function mapping

Function name Literal name

Released(track) ${track}-(R)
LogicallyClearElapsed(track) ${track}-(LCE)
RouteReleased(track) ${track}-(RR)
RouteLockedOccupied(track) ${track}-(RLO)

in this system is {T1, T2, T3, T4}. We can easily conclude from the
concrete properties that it always holds for a track that has no
switches belonging to it. According to the truth table (Table. 1),
only T1, T3 needs further consideration. “Released()” and “Logical-
lyClearElapsed()” are both state functions and should be checked
chronologically. Therefore, we would transform them using the
given mapping rule (Table. 2).

The result afterward shall be as follows:

Example 4.4 (Concrete Properties).

• SubRequirement-1-T1 := (¬ (P1-R) ∥ P1-LCE)
• SubRequirement-1-T3 := (¬ (P3-R) ∥ P3-LCE)
• SubRequirement-2-T1 := (¬ (P1-R) ∥ P1-RR)
• SubRequirement-2-T3 := (¬ (P3-R) ∥ P3-RR)
• SubRequirement-3-T1 := (¬ (P1-R) ∥ P1-RLO)
• SubRequirement-3-T3 := (¬ (P3-R) ∥ P3-RLO)

Afterward, we would combine the concrete properties and the
input model together to generate an aiger model. To achieve this,
We translate all the ‘or’ and ‘imply’ statements into ‘and’ statements
together with ‘not’. For example, we would translate “¬𝑎∥𝑏” into
“¬(𝑎&¬𝑏)”. We also introduce intermediate variables to represent
the temporary variables, and latches are introduced to store values
for timed expressions. For example, “𝑃𝑅𝐸 𝑎” implies that 𝑎 should
be stored in a latch, and therefore can be later referred to. The
detailed translation will be shown in Section 4.4.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong et al.

Once the aiger model is generated, we use a verification portfolio
to verify the model. Here we use IC3-ref [1] as the verifier, which
quickly determines that all properties are safe.

4.2 Framework Inputs

The inputs of a formal verification system can be generally divided
into two parts: the model of the system and the corresponding
specifications. In LightF3, however, due to the distinguishing char-
acteristics of interlocking systems, it has additional data part and
environment constraints part.

The system model describes the correlations between devices
and how the attribute of one device changes in the next cycle based
on all devices, which can be represented using LTL𝑃 formulas.
Meanwhile, the properties and constraints are expressed in FQLTL.
Although they may appear similar, properties describe the whole
interlocking system, while constraints serve as preconditions to
compress the state space and speed up verification. The track layout
and configuration data are maintained by the station and form the
later domain interpretation after a transformation process.

4.3 RIS-FL Model

ltl is widely used to express the behavioral constraints satisfied by
a system at each moment. However, in interlocking specifications,
the domain of entities referred to by the properties is limited. For
example, all the devices whose type is “route" have to satisfy a
particular property 𝑃1, ltl can only determine whether 𝑃1 is satis-
fied, but not in the restricted domain “route R”. One step further,
practical properties need to specify in a finite-time manner. We also
need to add concrete time-range qualifiers to the binary temporal
operators for practical use.

FQLTL is a recently proposed logic [15], which can express rela-
tional and temporal properties so as to restrict the finite domain
of devices described in LTL specification. FQLTL is accessible to
describe a system with multiple, interrelated devices, the syntax
and semantics of which are defined as follows.

Definition 4.5 (Syntax of FQLTL formulas). A legal FQLTL for-
mula 𝜙 has the following syntax:

𝜙 ::= 𝑡 | (𝜙) | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 → 𝜙 |
𝑃 (𝑡1, ..., 𝑡𝑘) | ALL 𝑥 · 𝜙 | SOME 𝑥 · 𝜙 |
PRE 𝜙 | 𝑋𝜙 | 𝜙 𝑈 [𝑚1,𝑚2] 𝜙 | 𝜙 𝑆 [𝑚1,𝑚2] 𝜙 ;

In the above, 𝑡, 𝑡1, ..., 𝑡𝑘 are the terms and 𝑃 is the predicate sym-
bol as defined in First-Order Logic. ALL is the universal quantifier,
which is a syntax sugar of ∀, while SOME is the existential quan-
tifier, which is a syntax sugar of ∃. Meanwhile, PRE, 𝑋 , 𝑈 , and 𝑆

are all temporal operators, where PRE is the Previous period oper-
ator and 𝑋 means the neXt period; 𝑈 is the Until operator, and 𝑆
is the Since (past) operator. And the underlined time range is the
qualifier mentioned above. In particular, we use 𝜙1 𝑅 𝜙2 to denote
¬(¬𝜙1𝑈¬𝜙2), i.e., where 𝑅 is the dual operator of 𝑈 ; and we use
the usual abbreviations:
• 𝐺 [𝑚1,𝑚2] 𝜙 = ⊥ 𝑅[𝑚1,𝑚2] 𝜙

• 𝐹 [𝑚1,𝑚2] 𝜙 = ⊤ 𝑈 [𝑚1,𝑚2] 𝜙

Definition 4.6 (Semantics of FQLTL formulas). Let 𝜉 be an infinite
trace, 𝜎 be a signature andA be the corresponding 𝜎-structure such

that the universe ofA, i.e.,𝑈A , is a finite set. Then the semantics of
FQLTL formulas are interpreted over the tuple ⟨𝜉,A, 𝑖⟩ such that:
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝑡 iff AJ𝑡K = 𝑡𝑟𝑢𝑒;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝑃 (𝑡1, ..., 𝑡𝑘) iff (AJ𝑡1K, . . . ,AJ𝑡𝑘K) ∈ 𝑃A ;
• ⟨𝜉,A, 𝑖⟩ ⊨ (𝜙) iff ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ ¬𝜙 iff ⟨𝜉,A, 𝑖⟩ ⊭ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 ∧𝜓 iff ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 and ⟨𝜉,A, 𝑖⟩ ⊨ 𝜓 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 ∨𝜓 iff ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 or ⟨𝜉,A, 𝑖⟩ ⊨ 𝜓 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 → 𝜓 iff ⟨𝜉,A, 𝑖⟩ ⊭ 𝜙 or ⟨𝜉,A, 𝑖⟩ ⊨ 𝜓 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ ALL 𝑥 · 𝜙 iff ∀ 𝑎 ∈ 𝑈A , ⟨𝜉,A[𝑥 ↦→𝑎] , 𝑖⟩ ⊨ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ SOME 𝑥 · 𝜙 iff ∃𝑎 ∈ 𝑈A , ⟨𝜉,A[𝑥 ↦→𝑎] , 𝑖⟩ ⊨ 𝜙 ;
• A ⊨ (𝑡1 = 𝑡2) iff AJ𝑡1K = AJ𝑡2K;
• ⟨𝜉,A, 𝑖⟩ ⊨ PRE 𝜙 iff 𝑖 > 0 𝑎𝑛𝑑 ⟨𝜉,A, 𝑖 − 1⟩ ⊨ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝑋 𝜙 iff 𝑖 ≥ 0 𝑎𝑛𝑑 ⟨𝜉,A, 𝑖 + 1⟩ ⊨ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 𝑈 [𝑚1,𝑚2] 𝜓 iff𝑚1 ≤ 𝑖 ≤ 𝑚2 and there is 𝑖 ≤

𝑗 ≤ 𝑚2 s.t. ⟨𝜉,A, 𝑗⟩ ⊨ 𝜓 and for all 𝑖 ≤ 𝑘 < 𝑗, ⟨𝜉,A, 𝑘⟩ ⊨ 𝜙 ;
• ⟨𝜉,A, 𝑖⟩ ⊨ 𝜙 𝑆 [𝑚1,𝑚2]𝜓 iff𝑚1 ≤ 𝑖 ≤ 𝑚2 and there is𝑚1 ≤

𝑗 ≤ 𝑖 s.t. ⟨𝜉,A, 𝑗⟩ ⊨ 𝜓 and for all 𝑗 < 𝑘 ≤ 𝑖, ⟨𝜉,A, 𝑘⟩ ⊨ 𝜙 .

The tuple ⟨𝜉,A, 𝑖⟩ |= 𝜙 means 𝜙 holds in ⟨𝜉,A⟩ at step i. In
particular, we define ⟨𝜉,A⟩ |= 𝜙 iff ⟨𝜉,A, 0⟩ |= 𝜙 .

Since the universe 𝑈A of A is restricted to be finite, the mo-
tivation comes up straightforwardly that the quantifiers can be
eliminated for further processing. We call FQLTL without quanti-
fiers LTL𝑃 . It differs from ltl in that it supports past-time temporal
operators. The syntax and semantics of LTL𝑃 are similar to those
of FQLTL, we just omit them here.

Definition 4.7 (FQLTL Instantiation). For an FQLTL formula
𝜙 with the signature 𝜎 . Let A be its 𝜎-structure and 𝑈A be the
universe in A. The instantiation of 𝜙 under A, denoted as 𝐼 (𝜙), is
an ltl formula such that
• 𝐼 (𝑃 (𝑡1, . . . , 𝑡𝑘)) = ⊤ iff (AJ𝑡1K, . . . ,AJ𝑡𝑘K) ∈ 𝑃A ; Other-
wise, 𝐼 (𝑃 (𝑡1, . . . , 𝑡𝑘)) = ⊥;
• 𝐼 (𝜙1 ∧ 𝜙2) = 𝐼 (𝜙1) ∧ 𝐼 (𝜙2);
• 𝐼 (𝜙1 ∨ 𝜙2) = 𝐼 (𝜙1) ∨ 𝐼 (𝜙2);
• 𝐼 (𝜙1 → 𝜙2) = ¬𝐼 (𝜙1) ∨ 𝐼 (𝜙2);
• 𝐼 (¬𝜙) = ¬𝐼 (𝜙);
• 𝐼 (PRE 𝜙) = PRE 𝐼 (𝜙);
• 𝐼 (𝑋𝜙) = 𝑋 𝐼 (𝜙);
• 𝐼 (𝜙1 𝑆 [𝑚1,𝑚2] 𝜙2) = 𝐼 (𝜙1) 𝑆 [𝑚1,𝑚2] 𝐼 (𝜙2);
• 𝐼 (𝜙1 𝑈 [𝑚1,𝑚2] 𝜙2) = 𝐼 (𝜙1) 𝑈 [𝑚1,𝑚2] 𝐼 (𝜙2);
• 𝐼 (ALL 𝑥 ·𝜙) = ∧

𝑎∈𝑈A 𝐼 (𝜙 [𝑥 ↦→𝑎]), where 𝜙 [𝑥 ↦→𝑎] is obtained
from 𝜙 by replacing 𝑥 to 𝑎;
• 𝐼 (SOME 𝑥 · 𝜙) = ∨

𝑎∈𝑈A 𝐼 (𝜙 [𝑥 ↦→𝑎]), where 𝜙 [𝑥 ↦→𝑎] is ob-
tained the same as above.

Based on FQLTL, the formal language for railway interlocking
systems can be defined as follows:

Definition 4.8 (RIS-FL). An interlocking system is a tuple (𝑀𝑜𝑑𝑒𝑙 ,
𝑃𝑟𝑜𝑝𝑠 , 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) such that 𝑃𝑟𝑜𝑝𝑠 and 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are FQLTL
formulas, and𝑀𝑜𝑑𝑒𝑙 is ({𝐷𝑒𝑣𝑖𝑐𝑒},𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦, {𝑅𝑢𝑙𝑒}) where
• 𝐷𝑒𝑣𝑖𝑐𝑒 := (𝑇𝑦𝑝𝑒, 𝐼𝐷, {𝐴𝑡𝑡𝑟 })
• 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 := (Vertex = {𝐷𝑒𝑣𝑖𝑐𝑒}, Edge := {(𝐷𝑒𝑣𝑖𝑐𝑒, 𝐷𝑒𝑣𝑖𝑐𝑒)})
• 𝑅𝑢𝑙𝑒 is an LTL𝑃 -formula over 2{{𝑇𝑦𝑝𝑒 }×{𝐼𝐷 }×{𝐴𝑡𝑡𝑟 }} .

To illustrate, we give a simple example here.

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Example 4.9 (Describe properties using LTL𝑃 formulas). Let De-
vices be {𝑇𝑟𝑎𝑐𝑘1,𝑇𝑟𝑎𝑐𝑘2}, and the universal domain be:
• {Type} := {Track}
• {ID} := {1,2}
• {Attr} := {Released, Locked}

then a trivial informal property:
“𝐼 𝑓 𝑎 𝑡𝑟𝑎𝑐𝑘 𝑖𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑, 𝑡ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑜𝑐𝑘𝑒𝑑.”
is corresponding to the LTL𝑃 Rules:• Track1Released→ ¬ Track1Locked
• Track2Released→ ¬ Track2Locked

4.4 Model Transformation

And-Inverter Graphs (AIGs) is a compact form to formulate model
checking problems [5]. To construct an AIGERmodel, it is necessary
to identify the system’s temporal constraints and subsequently map
them into components in AIGER. This process involves two main
steps. The first step instantiates generic properties into concrete
ones, eliminating all the quantifiers present in the properties.

The property instantiation procedure primarily relies on a recur-
sive calculation, with assistance from the domain interpretation. It
takes as input the expression, keeps a present mapping table from
type to particular device, and generates a (𝑆,𝑇𝐸) tuple, where 𝑆 is
the status of calculation represented in a three-valued Bool (True,
False or Undetermined) and 𝑇𝐸 is the timed Boolean expression.
The rough idea is expressed in pattern-matching-style Pseudo code
in Algorithm 1, where we focus on the Boolean expression here for
simplicity, leaving the calculation of status implicit.

Depending on the expression type, the instantiation procedure
does correlative calculation. As to the logic expression, it just cal-
culates the status using three-valued Boolean logic. If the status is
either True or False, then the result expression𝑇𝐸 should be empty.
Otherwise, 𝑇𝐸 will be concatenated together. Temporal operators
are reserved for later transformation while recursively calculating
sub-expressions. About quantifiers, it uses domain interpretation
to enumerate device instances and concatenates them together
likewise. Regarding function calls, operations are performed ac-
cording to detailed function types: either mapping to a literal with
the given rule, or returning a Boolean value representing whether
the relationship holds.

After instantiation, if the status 𝑆 is true, that means this prop-
erty is bound to satisfy regardless of time and does not need fur-
ther checking. We would leave it out. Otherwise, if the status
𝑆 is False, that means it would never be satisfiable, though this
should hardly happen in real cases, we would just put a placeholder
“𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙 & ¬ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐿𝑖𝑡𝑒𝑟𝑎𝑙” in it for robustness. Mean-
while, if the status is Undetermined, the corresponding concrete
properties are then generated.

To translate propositional logic to a combination of basic compo-
nents is trivial (Algorithm 2, 3). The basic idea is to use appropriate
latches whenever a time operator is used. For example, a ‘PRE’ oper-
ator means to fetch the prior cycle’s value and can be represented as
a latch in aiger. Similar operations can be done with this approach.
Combining the model expressions and concrete properties, the aiger
model is finally produced. Notably, in Algorithm 3, function ‘Var’
maps an LTL𝑃 formula to an integer; ‘And (c, a, b)’ creates an and-
gate whose output is c and inputs are a, b; ‘Latch (a, b)’ creates a
latch whose current and next values are a, b respectively.

Algorithm 1: Property Instantiation Algorithm
Input: A FQLTL property 𝑝 , Main Device Type 𝑡 , Device

Domain 𝐷

Output: A set of corresponding LTL𝑃 properties 𝐿
𝐿 B {}
foreach 𝑑𝑒𝑣𝑖 𝑖𝑛 𝐷 do

𝑖𝑡𝑒𝑚 ← {𝑡 := 𝑑𝑒𝑣𝑖 }
𝑙𝑖 ← 𝐼𝑁𝑆𝑇 (𝑝, 𝑖𝑡𝑒𝑚)
𝐿 ← 𝐿 ∪ 𝑙𝑖

function INST(𝑝, 𝑖𝑡𝑒𝑚)
𝑚𝑎𝑡𝑐ℎ 𝑝 𝑤𝑖𝑡ℎ

| 𝐴𝑙𝑙 𝑡𝑦𝑝 𝑝1 ⇒
{𝑑𝑒𝑣} ← 𝑔𝑒𝑡𝑑𝑒𝑣𝑖𝑐𝑒 (𝑡𝑦𝑝, 𝐷)
𝑟𝑒𝑡𝑢𝑟𝑛

∧(𝐼𝑁𝑆𝑇 (𝑝1, 𝑖𝑡𝑒𝑚 ∪ 𝑡𝑦𝑝 B 𝑑𝑒𝑣𝑖))
| 𝑆𝑜𝑚𝑒 𝑡𝑦𝑝 𝑝1 ⇒
{𝑑𝑒𝑣} ← 𝑔𝑒𝑡𝑑𝑒𝑣𝑖𝑐𝑒 (𝑡𝑦𝑝, 𝐷)
𝑟𝑒𝑡𝑢𝑟𝑛

∨(𝐼𝑁𝑆𝑇 (𝑝1, 𝑖𝑡𝑒𝑚 ∪ 𝑡𝑦𝑝 B 𝑑𝑒𝑣𝑖))
| 𝑝1 ∧ 𝑝2 ⇒
𝑟𝑒𝑡𝑢𝑟𝑛 𝐼𝑁𝑆𝑇 (𝑝1, 𝑖𝑡𝑒𝑚) ∧ 𝐼𝑁𝑆𝑇 (𝑝2, 𝑖𝑡𝑒𝑚)
| 𝑝1 ∨ 𝑝2 ⇒
𝑟𝑒𝑡𝑢𝑟𝑛 𝐼𝑁𝑆𝑇 (𝑝1, 𝑖𝑡𝑒𝑚) ∨ 𝐼𝑁𝑆𝑇 (𝑝2, 𝑖𝑡𝑒𝑚)
| ¬𝑝1 ⇒ 𝑟𝑒𝑡𝑢𝑟𝑛 ¬ 𝐼𝑁𝑆𝑇 (𝑝1, 𝑖𝑡𝑒𝑚)
| 𝑃𝑅𝐸 𝑝 ⇒ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑃𝑅𝐸 𝐼𝑛𝑠𝑡 (𝑝)
| 𝑋 𝑝 ⇒ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑋 𝐼𝑛𝑠𝑡 (𝑝)
| 𝑝1 𝑈 [𝑡1,𝑡2] 𝑝2 ⇒
𝑟𝑒𝑡𝑢𝑟𝑛 𝐼𝑁𝑆𝑇 (𝑝1) 𝑈 [𝑡1,𝑡2] 𝐼𝑁𝑆𝑇 (𝑝2)
| 𝑝1 𝑆 [𝑡1,𝑡2] 𝑝2 ⇒
𝑟𝑒𝑡𝑢𝑟𝑛 𝐼𝑁𝑆𝑇 (𝑝1) 𝑆 [𝑡1,𝑡2] 𝐼𝑁𝑆𝑇 (𝑝2)
| 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 ⇒
(∗ 𝑢𝑠𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∗)

Algorithm 2: Generate Aiger
Input:𝑀𝑜𝑑𝑒𝑙 𝑚, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑠𝑒𝑡 𝑃, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑠𝑒𝑡 𝐶

Output: 𝐴𝑖𝑔𝑒𝑟 𝑀𝑜𝑑𝑒𝑙 𝐴

A← {}
foreach 𝑟𝑖 𝑖𝑛 𝑚.𝑟𝑢𝑙𝑒𝑠 do

𝐴← 𝐴 ∪ 𝑡𝑟𝑎𝑛𝑠 (𝑟𝑖)
foreach 𝑝𝑖 𝑖𝑛 𝑃 do

𝐴← 𝐴 ∪ 𝑡𝑟𝑎𝑛𝑠 (𝐼𝑁𝑆𝑇 (𝑝𝑖))
𝑀𝑎𝑟𝑘 (𝑝𝑖 , ‘𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦′, 𝐴)

foreach 𝑐𝑖 𝑖𝑛 𝐶 do

𝐴← 𝐴 ∪ 𝑡𝑟𝑎𝑛𝑠 (𝐼𝑁𝑆𝑇 (𝑐𝑖))
𝑀𝑎𝑟𝑘 (𝑐𝑖 , ‘𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ′, 𝐴)

4.5 Verification Portfolio

Over the past few decades, model checking techniques have under-
gone significant evolution, enabling the solution of increasingly
complex problems. Although BMC has been the go-to technique
for hardware model checking, it has certain drawbacks, such as
the inability to prove the absence of errors without special han-
dling [7]. Recently, new techniques such as CAR, IMC, IC3/PDR
have emerged, and while they may produce a larger number of SAT
queries than BMC, most of them can be handled well by modern
SAT solvers. Each of these techniques has its own strengths and

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong et al.

weaknesses, and there is no clear winner. For example, IC3 can
solve instances that BMC cannot and vice-versa [17]; The same is
true among AVY [47], QUIP [32] and IC3. BMC outperforms IMC
on unsafe instances [6]; CAR is able to solve some instances that
are not solved by any other techniques, but not all [40].

Therefore, a verifier portfolio may be preferable to relying on
a specific verifier. However, few prior works have employed the
latest model-checking techniques for interlocking systems. In our
framework, LightF3, we can easily add any latest aiger-based verifier
without additional cost. This allows us to effectively solve practical
interlocking problems using the latest model-checking techniques
and provide rich feedback for future design.

Algorithm 3: The Trans Procedure
Input: 𝐿𝑇𝐿𝑃 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎 𝜙

Output: 𝐴𝑖𝑔𝑒𝑟 𝑀𝑜𝑑𝑒𝑙 𝐴

𝐴← match 𝜙 𝑤𝑖𝑡ℎ

| atom⇒ ∅
| ¬𝜙1⇒
𝐴𝑛𝑑 (𝑉𝑎𝑟 (¬𝜙1),¬𝑉𝑎𝑟 (𝜙1),𝑇𝑟𝑢𝑒) ∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙1)
| 𝜙1 ∨ 𝜙2⇒ 𝐴𝑛𝑑 (𝑉𝑎𝑟 (¬(𝜙1 ∨ 𝜙2)),𝑉𝑎𝑟 (¬𝜙1),𝑉𝑎𝑟 (¬𝜙2))
∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙1) ∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙2)
| 𝜙1 ∧ 𝜙2 ⇒
𝐴𝑛𝑑 (𝑉𝑎𝑟 (𝜙1 ∧ 𝜙2),𝑉𝑎𝑟 (𝜙1),𝑉𝑎𝑟 (𝜙2))
∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙1) ∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙2)
| 𝜙1→ 𝜙2⇒
𝑡𝑟𝑎𝑛𝑠 (¬𝜙1 ∨ 𝜙2)
| 𝜙1↔ 𝜙2 ⇒
𝑡𝑟𝑎𝑛𝑠 ((𝜙1 → 𝜙2) ∧ (𝜙2 → 𝜙1))
| 𝑃𝑅𝐸 𝜙1 ⇒
𝐿𝑎𝑡𝑐ℎ(𝑉𝑎𝑟 (𝑃𝑅𝐸 𝜙1),𝑉𝑎𝑟 (𝜙1)) ∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙1)
| 𝑋 𝜙1 ⇒
𝐿𝑎𝑡𝑐ℎ(𝑉𝑎𝑟 (𝜙1),𝑉𝑎𝑟 (𝑋 𝜙1)) ∪ 𝑡𝑟𝑎𝑛𝑠 (𝜙1)
| 𝜙1 𝑈 [𝑡1,𝑡2] 𝜙2⇒
match 𝑡2 with
| 𝑡1⇒ 𝑡𝑟𝑎𝑛𝑠 (𝜙2)
| _⇒ 𝑡𝑟𝑎𝑛𝑠 (𝑋 𝑡1 (𝜙2 ∨ (𝜙1 ∧ 𝑋 (𝜙1 𝑈 [𝑡1+1,𝑡2] 𝜙2))))
| 𝜙1 𝑆 [𝑡1,𝑡2] 𝜙2⇒
match 𝑡1 with
| 𝑡2⇒ 𝑡𝑟𝑎𝑛𝑠 (𝜙2)
| _⇒ 𝑡𝑟𝑎𝑛𝑠 (𝑃𝑅𝐸𝑡2 (𝜙2 ∨ (𝜙1 ∧ 𝑃𝑅𝐸 (𝜙1𝑆 [𝑡1,𝑡2−1]𝜙2))))

5 EVALUATION

With a friendly interface, the bar of writing formal properties is
lowered to a great extent. However, this may possibly incur an in-
crease in transformation cost. Besides, the extensible design allows
any state-of-the-art verifiers to give it a try on interlocking prob-
lems. For our evaluation, we are interested in testing whether the
model transformation is an efficiency bottleneck that causes solving
failure, as well as how different verifiers behave in interlokcing
context.

5.1 Evaluation Setup

We run experiment on a cluster of servers, which is equipped with
an Intel Xeon Gold 6132 14-core processor at 2.6GHz and 96GB
RAM. And the version of operating system is Red Hat 4.8.5-16.

Table 3: Station Size

Station Track Route Switch Signal

Alice 14 8 3 12
Bob 56 70 14 37

Charlie 171 503 87 152
David 151 720 79 145
Eve 151 499 74 140

We conducted the experiment to evaluate the performance of
LightF3 using five sample stations of varying sizes (Table. 3). For
testing purposes, we utilized a set of 206 abstract properties. To
ensure confidentiality, we renamed the stations based on the

requirements of our industrial partner. Except for Station Eve
which has 262 unsafe concrete properties among 8002 ones, all the
other concrete properties are safe. This corresponds to the industrial
fact that most properties to be verified do hold. The experiment is
conducted serially, though some verifiers support parallel like IC3.

5.2 Evaluation Results

RQ1: What is the cost for model transformation in LightF3?

We set three checkpoints in the life cycle, by which we record
the time consumption during each period. Property instantiation
and aiger generation together make up the model transformation
procedure, as is shown in Fig. 6.

Trivially, the complexity of instantiation is utmost 𝑂 (
𝑄∏
𝑖=1

𝑛𝑖),
where 𝑄 is the count of quantifiers and 𝑛𝑖 is the sum of devices
of target type. With caching strategy and limited max parameter

count, the complexity can be lower to 𝑂 (
𝑛𝑟𝐹∑
𝑗=1
(
𝑝 𝑗∏
𝑖=1

𝑛𝑖, 𝑗)), where 𝑛𝑟𝐹
means the number of relative functions, 𝑝 𝑗 the parameter of the
𝑗-th function and𝑛𝑖, 𝑗 means the number of the 𝑖-th parameter in the
𝑗-th function. The short circuit characteristics in logic computation
further reduce the amount of calculation. As to aiger generation,
the complexity is linear with respect to amount of literals, which
grows at an approximate linear velocity empirically. In summary,
the model transformation procedure requires a moderate amount
of time and exhibits slow growth as the model scales up.

In verification, however, model checking techniques require
traversing all possible routes and states which is at least polynomial
in complexity, and even degrade into exponential as the problem
gets more complex. Though some implementations like Backward
CAR do behave well, the time cost in most implementations grows
at a high rate with respect to amount of literals.

From the result shown in Fig. 6, we can see that time consump-
tion of model transformation grows with scale at a low speed, while
verification time grows rapidly. Besides, we take IC3-ref as an exam-
ple, see Fig. 7. The proportion of instantiation and aiger generation
are both small as to large scale stations. All these corresponds with
our perception. We can conclude that either the problem is trivial
to verify, under such circumstance there’s no threat to fail; or the
transformation takes a small percentage of time. We summarize
that model transformation is not likely to become an efficiency
bottleneck, let alone directly causing solving failure.

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

120000

100000

80000

60000

Backward CAR
Forward CAR

IC3-ref
IIMC-ic3

IIMC-bmc
Transform

40000

20000

0
Alice Bob Charlie David Eve

Station Names

Ti
m
e
C
on
su
m
pt
io
n
(s
)

Figure 6: Sum of Time Consumption

Instantiation
AigerGen

Verification

100

80

60

40

20

0
Alice Bob Charlie David Eve

Station Names

P
er
ce
nt
ag
e

（
）

Figure 7: Time Consumption Proportion

with IC3-ref

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Backward CAR
Forward CAR

IC3-ref
IIMC-ic3

IIMC-bmc
Silver Bullet

Alice Bob Charlie David Eve

T
he

nu
m
be
ro
fs
ol
ve
d
ca
se
s

Figure 8: Sum of Solved Cases

RQ2: How do different verifiers behave in the context of

interlocking?

Generally speaking, Backward CAR and IC3-ref perform best
in interlocking verification. They solve the most cases (Fig. 8) and
consumed moderate time (Fig. 6). Forward CAR comes after the
prior two, while the others can only solve a few cases as to large
scale problems, and are somehow not so suitable for practical inter-
locking verification.

For correctness proof, BMC has an inherent drawback, not sur-
prising IIMC-bmc not doing well. Forward CAR is designed to be
better in verifying safety [37], while the result is on the contrary.We
then further investigate in abstract property level within station Eve.
In fact, ForwardCAR does better on particular properties (Fig. 10(a)).
But it is too slow or even fails on some ones, and therefore slows
down the verification of whole property. Adding a supplement,
Forward CAR fails to find all the counterexamples, directly leading
to the failure. That is possibly the reason why Backward CAR does
better than Forward CAR. We also contact maintainers for help,
while so far no convincing probable cause has been found.

Comparing the two best, Backward CAR performs better than
IC3-ref in most models: not only in the result obtained, but also
in speed. However, there does exist some occasion, like Station
Charlie, where IC3-ref can solve more cases than Backward CAR.
More specific, concretize to abstract property level, it can be seen
in Fig. 10(b) that they each has its own advantage, while Backward
CAR performs better on the whole. The result is in line with our
expectations that no model checking techniques can overwhelm
others in all aspects, which further proves the effectiveness of the
extensible design in LightF3.

Furthermore, we select all unsafe instances to shed light on
bug finding. IIMC-ic3 and Forward CAR has a far lower efficiency.
Among the other three implementations left, BMC has an inherent
talent to find counterexamples, while CAR and IC3 each can find
bugs that BMC cannot. We compare them pairwise, and draw the
scatter diagrams (Fig. 9). As is shown, Backward CAR can find most
counter examples faster than IIMC-bmc (Fig. 9(a)), while IIMC-bmc
does better on most cases than IC3-ref (Fig. 9(b)), which cannot
even finish all in time. Backward CAR outperforms IC3-ref in all the
counter cases (Fig. 9(c)). To summarize, Backward CAR performs
best in most unsafe instances, but not all.

RQ3: How effective is it for verifiers to complement each

other?

As is illustrated in RQ2, Backward CAR and IC3-ref have their
advantages in overall performance, while IIMC-bmc is sometimes
the best in finding counter examples. We try to use IC3-ref and
IIMC-bmc to complement Backward CAR. We first union all the
cases solved by each verifier and get the ceiling, with which we try
omitting and backtracking to eliminate those of few contribution.
Once there is nothing to omit, we get the minimal useful portfolio.

As is shown in Fig. 11, with the same solving order and time
limit, IC3-ref and IIMC-bmc moderately enhance problem-solving
capability, albeit to a limited extent. Besides, adding other verifiers
to portfolio cannot take one step further. Distinguished from the
fact that IC3/PDR and Forward CAR perform far better than Back-
ward CAR on proving correctness in hardware verification [37, 40],
Backward CAR does really good work in verifying interlocking sys-
tems. It utilizes a different searching strategy compared to IC3/PDR
and Forward CAR within the verification process. The hypothe-
sis is that the model structure of an interlocking system may be
verified more efficiently by Backward CAR. This observation may
help reveal the characteristic of interlocking verification and worth
further investigation.

6 EXPERIENCE & LESSON

We initiated the design and development of the LightF3 framework
in 2020, and over the course of the past three years, we have gained
valuable experience and lesson, which we would like to share in
this section.

One of the most significant lessons we have learned is the im-
portance of domain knowledge over specific implementation. We
dedicated a substantial amount of time to consulting technicians
and experts in the field to acquire deep domain knowledge of in-
terlocking systems. This knowledge proved crucial in designing
and developing the property instantiation procedure. When instan-
tiating each function within a FQLTL property, we relied on the
guidance of technicians to understand the meaning and specific
requirements of the function. For example, when instantiating the
function BelongToTrack(switch, track), we consult technicians to
understand its meaning (which is typically checking whether a
specific switch belongs to a particular track) and how we determine
its value for a given switch and track. Technicians may guide us to
refer to specific Excel sheets in the configuration data and verify
whether the switch is located in a specific cell. This information
then guides our code implementation.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yibo Dong et al.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

II
M

C
 B

M
C

 (
s
)

Backward CAR (s)

(a) B-CAR vs IIMC-bmc

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

II
M

C
 B

M
C

 (
s
)

IC3ref (s)

(b) IC3-ref vs IIMC-bmc

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

IC
3
re

f
(s

)

Backward CAR (s)

(c) B-CAR vs IC3-ref

Figure 9: Pairwise Comparison in Unsafe Concrete Property Level (within Station Eve)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

F
o
rw

a
rd

 C
A

R

Backward CAR (s)

(s
)

(a) B-CAR vs F-CAR

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

IC
3
re

f

Backward CAR (s)

(s
)

(b) B-CAR vs IC3-ref

Figure 10: Pairwise Comparison in Abstract Property Level (within Station Eve)

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000

N
u
m

b
e
r

o
f
s
o
lv

e
rd

 c
a
s
e
s

CPU Time (s)

Backward CAR
IC3-ref

IIMC-bmc
Backward CAR+IC3-ref

Backward CAR+IIMC-bmc
Backward CAR+IC3-ref+IIMC-bmc

Backward CAR+Forward CAR+IC3-ref+IIMC-bmc
Backward CAR+Forward CAR+IC3-ref+IIMC-bmc+IIMC-ic3

○

Figure 11: Sum of Cases Solved by Verfier

Portfolios

Another important experience is that the best model-checking
algorithm extensively benchmarked in the hardware-design do-
main may not be the most suitable one for interlocking system
verification. Although IC3/PDR is considered the most advanced
model checking algorithm in terms of overall performance, and
its performance on the HWMCC benchmark is much better than
Backward CAR, Backward CAR surprisingly outperforms IC3/PDR
and others on the interlocking system verification benchmark. This
could be because the interlocking system verification benchmark
is unique, or because Backward CAR utilizes a different searching
strategy compared to IC3/PDR. Therefore, it is always necessary
and beneficial to try using a model checking portfolio, instead of
only relying on the best algorithm by default.

7 DISCUSSION & CONCLUSION

Considerable efforts have been dedicated to modeling and verifying
interlocking systems. However, there is a lack of formal descrip-
tions for these systems, resulting in different perspectives and a
lack of common understanding. In this paper, we address this gap
by providing a formal description of the interlocking system and
proposing a specific modeling and verification language, RIS-FL,
based on the FQLTL logic. We encourage further research to focus
on verification tasks using these models, which we believe will
benefit both domain engineers and formal experts.

Previous works have integrated various model checking algo-
rithms into their frameworks. However, these integrations often
form closed chains that are challenging to extend. While model

checking algorithms have rapidly advanced in recent decades, pre-
vious works have struggled to keep up with the state-of-the-art ver-
ification techniques. To address this issue, our framework, LightF3,
is designed to be lightweight and extensible. It allows for the uti-
lization of any new model checking improvements that support the
aiger input format, ensuring that the latest verification techniques
can be readily applied to interlocking system verification.

To conclude, we present LightF3, a lightweight and fully-process
formal framework to model and verify Railway interlocking sys-
tems. A formal language RIS-FL based on FQLTL is provided for
modeling the system and specifications. The RIS-FL models are au-
tomatically transformed into aiger models, enabling the invocation
of third-party checkers to perform the verification task. To assess
the effectiveness and efficiency of LightF3, we conduct evalua-
tions on five real station instances obtained from our industrial
partner. We further investigate and analyze the statistics of the ver-
ification results using various model-checking techniques. Overall,
LightF3 offers a powerful and practical solution for modeling and
verifying railway interlocking systems, bridging the gap between
formal methods and railway domain expertise. It has the potential
to enhance safety, efficiency, and innovation in the railway industry.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their helpful comments. This
work is supported by the National Natural Science Foundation of
China (NO. U21B2015 and 62002118), and the Shanghai Collabora-
tive Innovation Center of Trusted Industry Internet Software.

LightF3: A Lightweight Fully-Process Formal Framework for Automated Verifying Railway Interlocking Systems ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES

[1] Ic3ref. https://github.com/arbrad/IC3ref.
[2] Alpern, B., and Schneider, F. B. Recognizing safety and liveness. Distributed

computing 2, 3 (1987), 117–126.
[3] Behm, P., Benoit, P., Faivre, A., and Meynadier, J.-M. Météor: A successful

application of b in a large project. In FM’99 — Formal Methods (Berlin, Heidelberg,
1999), J. M. Wing, J. Woodcock, and J. Davies, Eds., Springer Berlin Heidelberg,
pp. 369–387.

[4] Bertot, Y., and Castéran, P. Interactive theorem proving and program develop-
ment: Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media, 2013.

[5] Biere, A. The aiger and-inverter graph (aig) format version 20071012.
[6] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. Symbolic model

checking using sat procedures instead of bdds. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (1999), pp. 317–320.

[7] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. Bounded
model checking. Handbook of satisfiability 185, 99, 457–481.

[8] Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., and Cipriani, L.
Validation of railway interlocking systems by formal verification, a case study. In
Software Engineering and Formal Methods (Cham, 2014), S. Counsell andM. Núñez,
Eds., Springer International Publishing, pp. 237–252.

[9] Borälv, A. Interlocking design automation using prover trident. In Formal
Methods (Cham, 2018), K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, Eds.,
Springer International Publishing, pp. 653–656.

[10] Bradley, A. R. Sat-based model checking without unrolling. In International
Workshop on Verification, Model Checking, and Abstract Interpretation (2011),
Springer, pp. 70–87.

[11] Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., and Schaus, P. Verification
of railway interlocking systems. In ESSS (2015).

[12] Cappart, Q., Limbrée, C., Schaus, P., and Legay, A. Verification by discrete
simulation of interlocking systems. In 29th Annual European Simulation and
Modelling Conference (2015), pp. 402–409.

[13] Cappart, Q., Limbrée, C., Schaus, P., Quilbeuf, J., Traonouez, L.-M., and
Legay, A. Verification of interlocking systems using statistical model checking.
In 2017 IEEE 18th International Symposium on High Assurance Systems Engineering
(HASE) (2017), pp. 61–68.

[14] Celebi, B. T., and Kaymakci, O. T. Verifying the accuracy of interlocking tables
for railway signalling systems using abstract state machines. Journal of Modern
Transportation 24 (2016), 277–283.

[15] Chen, Y., Zhang, X., and Li, J. Finite quantified linear temporal logic and
its satisfiability checking. In Artificial Intelligence Logic and Applications: The
2nd International Conference, AILA 2022, Shanghai, China, August 26–28, 2022,
Proceedings (2022), Springer, pp. 3–18.

[16] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri,M. Nusmv: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer 2,
4 (2000), 410–425.

[17] Cimatti, A., and Griggio, A. Software model checking via ic3. In International
Conference on Computer Aided Verification (2012), Springer, pp. 277–293.

[18] Clarke, E. M. Model checking. In International Conference on Foundations of
Software Technology and Theoretical Computer Science (1997), Springer, pp. 54–56.

[19] de Almeida Pereira, D. I., Deharbe, D., Perin, M., and Bon, P. B-specification
of relay-based railway interlocking systems based on the propositional logic
of the system state evolution. In Reliability, Safety, and Security of Railway
Systems.Modelling, Analysis, Verification, and Certification (Cham, 2019), S. Collart-
Dutilleul, T. Lecomte, and A. Romanovsky, Eds., Springer International Publishing,
pp. 242–258.

[20] Eén, N., Mishchenko, A., and Brayton, R. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD)
(2011), IEEE, pp. 125–134.

[21] EN, B. 50128 (2011). railway applications-communication, signalling and process-
ing systems: Software for railway control and protection systems. International
Electrotechnical Commission (2011).

[22] Ferrari, A., Magnani, G., Grasso, D., and Fantechi, A. Model checking
interlocking control tables. In FORMS/FORMAT 2010. Springer, 2011, pp. 107–115.

[23] Ferrari, A., ter Beek, M. H., Mazzanti, F., Basile, D., Fantechi, A., Gnesi,
S., Piattino, A., and Trentini, D. Survey on formal methods and tools in
railways: The astrail approach. In Reliability, Safety, and Security of Railway
Systems.Modelling, Analysis, Verification, and Certification (Cham, 2019), S. Collart-
Dutilleul, T. Lecomte, and A. Romanovsky, Eds., Springer International Publishing,
pp. 226–241.

[24] Giacomo, G. D., and Vardi, M. Y. Linear temporal logic and linear dynamic logic
on finite traces. AAAI Press (2013).

[25] Giacomo, G. D., and Vardi, M. Y. Synthesis for ltl and ldl on finite traces. AAAI
Press (2015).

[26] Gonschorek, T., Bedau, L., and Ortmeier, F. Bringing formal methods on the
rail. Safety and Reliability – Safe Societies in a Changing World (2018).

[27] Haxthausen, A. E., Peleska, J., and Pinger, R. Applied boundedmodel checking
for interlocking system designs. In Software Engineering and Formal Methods
(Cham, 2014), S. Counsell and M. Núñez, Eds., Springer International Publishing,
pp. 205–220.

[28] Holzmann, G. J. The model checker - spin. IEEE Transactions on Software
Engineering 23 (1997), 279–295.

[29] Iliasov, A., Lopatkin, I., and Romanovsky, A. The safecap platform for mod-
elling railway safety and capacity. In Computer Safety, Reliability, and Security
(Berlin, Heidelberg, 2013), F. Bitsch, J. Guiochet, and M. Kaâniche, Eds., Springer
Berlin Heidelberg, pp. 130–137.

[30] Iliasov, A., Taylor, D., Laibinis, L., and Romanovsky, A. Formal verification
of signalling programs with safecap. In Computer Safety, Reliability, and Security
(Cham, 2018), B. Gallina, A. Skavhaug, and F. Bitsch, Eds., Springer International
Publishing, pp. 91–106.

[31] Iliasov, A., Taylor, D., Laibinis, L., and Romanovsky, A. Practical verification
of railway signalling programs. IEEE Transactions on Dependable and Secure
Computing (2022), 1–1.

[32] Ivrii, A., and Gurfinkel, A. Pushing to the top. In 2015 Formal Methods in
Computer-Aided Design (FMCAD) (2015), IEEE, pp. 65–72.

[33] James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Set-
zer, A., Kanso, K., and Chadwick, S. Verification of solid state interlocking
programs. In Software Engineering and Formal Methods (Cham, 2014), S. Counsell
and M. Núñez, Eds., Springer International Publishing, pp. 253–268.

[34] Lawrence, A., Seisenberger, M., Lawrence, A., and Seisenberger, M. Veri-
fication of railway interlockings in scade. In AVOCS’10, Proceedings of the 10th
International Workshop on Automated Verification of Critical Systems and the Rodin
User and Develop Workshop (2010), Springer, pp. 112–114.

[35] Le Bliguet, M., and Andersen Kjær, A. Modelling interlocking systems for
railway stations. Master’s thesis, Technical University of Denmark, DTU, DK-
2800 Kgs. Lyngby, Denmark, 2008.

[36] Leuschel, M., and Butler, M. Prob: A model checker for b. In International
symposium of formal methods europe (2003), Springer, pp. 855–874.

[37] Li, J., Dureja, R., Pu, G., Rozier, K. Y., and Vardi, M. Y. Simplecar: An efficient
bug-finding tool based on approximate reachability. In International Conference
on Computer Aided Verification (2018), Springer, pp. 37–44.

[38] Li, J., Zhang, L., Pu, G., Vardi, M. Y., and He, J. Ltl satisfiability checking
revisited. In 2013 20th International Symposium on Temporal Representation and
Reasoning (TIME) (2013).

[39] Li, J., Zhu, S., Pu, G., and Vardi, M. Sat-based explicit ltl reasoning. Haifa
Verification Conference (2015).

[40] Li, J., Zhu, S., Zhang, Y., Pu, G., and Vardi, M. Y. Safety model checking with
complementary approximations. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2017), IEEE, pp. 95–100.

[41] Malakar, B., and Roy, B. Railway fail-safe signalization and interlocking
design based on automation petri net. In International Conference on Information
Communication and Embedded Systems (ICICES2014) (2014), pp. 1–4.

[42] Maofei, M., and Yong, Z. Modeling and formal verification of interlocking
system based on uml and hcpn. In 2020 World Conference on Computing and
Communication Technologies (WCCCT) (2020), pp. 47–52.

[43] McMillan, K. L. Interpolation and sat-based model checking. In International
Conference on Computer Aided Verification (2003), Springer, pp. 1–13.

[44] Michaud, T., and Colange, M. Reactive synthesis from ltl specification with
spot. In In Proceedings of the 7th Workshop on Synthesis (2018).

[45] Nash, A., Huerlimann, D., Schütte, J., andKrauss, V. P. Railml† a standard data
interface for railroad applications. WIT Transactions on The Built Environment 74
(2004).

[46] Rozier, K. Y., and Vardi, M. Y. Ltl satisfiability checking. In International SPIN
Workshop on Model Checking of Software (2007).

[47] Vizel, Y., and Gurfinkel, A. Interpolating property directed reachability. In
International Conference on Computer Aided Verification (2014), Springer, pp. 260–
276.

[48] Vu, L. H., Haxthausen, A. E., and Peleska, J. Formal modelling and verifica-
tion of interlocking systems featuring sequential release. Science of Computer
Programming 133 (2017), 91–115. Formal Techniques for Safety-Critical Systems
(FTSCS 2014).

[49] Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. S. Formal
methods: Practice and experience. ACM Comput. Surv. 41 (2009), 19:1–19:36.

[50] Zhu, W. Big data on linear temporal logic formulas. In 2021 IEEE 4th Advanced
Information Management, Communicates, Electronic and Automation Control Con-
ference (IMCEC) (2021).

Received 2023-05-18; accepted 2023-07-31

https://github.com/arbrad/IC3ref

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 First-Order Logic
	3.2 Linear Temporal Logic
	3.3 Model Checking
	3.4 Verification of Interlocking System

	4 LightF3 Framework
	4.1 Illustrating Example
	4.2 Framework Inputs
	4.3 RIS-FL Model
	4.4 Model Transformation
	4.5 Verification Portfolio

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Experience & Lesson
	7 Discussion & Conclusion
	References

